GROUND STATE SOLUTIONS FOR ASYMPTOTICALLY PERIODIC LINEARLY COUPLED SCHRODINGER EQUATIONS WITH CRITICAL EXPONENT

被引:0
|
作者
Chen, Sitong [1 ]
Tang, XianHua [1 ]
Li, Jianxiong [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Linearly coupled Schrodinger system; Nehari-type ground state solutions; Sobolev critical exponent; NEHARI-MANIFOLD METHOD; MAXWELL-DIRAC SYSTEM; STANDING WAVES; R-N; SOLITONS; NONLINEARITY; BIFURCATION; POTENTIALS;
D O I
10.2996/kmj/1509415233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the following system of coupled nonlinear Schrodinger equations { -Delta u + a(x)u = vertical bar u vertical bar(p-2) u + lambda(x)nu, x epsilon R-N, -Delta v + b(x)v = vertical bar v vertical bar(2*-2) v + lambda(x)u, x epsilon R-N, u,v epsilon H-1 (R-N), where N >= 3, 2 < p < 2*, 2* = 2N/(N - 2) is the Sobolev critical exponent, a,b,lambda epsilon C(R-N, R) boolean AND L-infinity (R-N, R) and a(x), b(x) and lambda(x) are asymptotically periodic, and can be sign-changing. By using a new technique, we prove the existence of a ground state of Nehari type solution for the above system under some mild assumptions on a, b and lambda. In particular, the common condition that vertical bar lambda(x)vertical bar < root a(x)b(x) for all x epsilon R-N is not required.
引用
收藏
页码:562 / 576
页数:15
相关论文
共 50 条
  • [1] GROUND STATE SOLUTIONS FOR ASYMPTOTICALLY PERIODIC SCHRODINGER EQUATIONS WITH CRITICAL GROWTH
    Zhang, Hui
    Xu, Junxiang
    Zhang, Fubao
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [2] A positive ground state solution for a class of asymptotically periodic Schrodinger equations with critical exponent
    Liu, Jiu
    Liao, Jia-Feng
    Tang, Chun-Lei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (07) : 1851 - 1864
  • [3] GROUND STATE SOLUTIONS FOR ASYMPTOTICALLY PERIODIC QUASILINEAR SCHRODINGER EQUATIONS WITH CRITICAL GROWTH
    Xue, Yanfang
    Tang, Chunlei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (03) : 1121 - 1145
  • [4] GROUND STATE SOLUTIONS FOR ASYMPTOTICALLY PERIODIC MODIFIED SCHRODINGER-POISSON SYSTEM INVOLVING CRITICAL EXPONENT
    Li, Yong-Yong
    Xue, Yan-Fang
    Tang, Chun-Lei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (05) : 2299 - 2324
  • [5] GROUND STATE SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS WITH ASYMPTOTICALLY PERIODIC POTENTIALS
    Guo, Jianmin
    Kang, Shugui
    Ma, Shiwang
    Zhang, Guang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (04): : 1663 - 1677
  • [6] GROUND STATE SOLUTIONS FOR FRACTIONAL SCHRODINGER EQUATIONS WITH CRITICAL SOBOLEV EXPONENT
    Teng, Kaimin
    He, Xiumei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (03) : 991 - 1008
  • [7] Standing waves for linearly coupled Schrodinger equations with critical exponent
    Chen, Zhijie
    Zou, Wenming
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (03): : 429 - 447
  • [8] Concentrating ground state for linearly coupled Schrodinger systems involving critical exponent cases
    Lin, Ying-Chieh
    Wang, Kuan-Hsiang
    Wu, Tsung-Fang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 380 : 254 - 287
  • [9] Ground state solutions for asymptotically periodic Schrodinger equations with indefinite linear part
    Zhang, Hui
    Xu, Junxiang
    Zhang, Fubao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (01) : 113 - 122
  • [10] Positive ground state solutions for asymptotically periodic generalized quasilinear Schrodinger equations
    Zhang, Shulin
    AIMS MATHEMATICS, 2022, 7 (01): : 1015 - 1034