Global Sensitivity Analysis in Load Modeling via Low-Rank Tensor

被引:13
|
作者
Lin, You [1 ,2 ]
Wang, Yishen [3 ]
Wang, Jianhui [2 ]
Wang, Siqi [3 ]
Shi, Di [3 ]
机构
[1] GEIRI North Amer, AI & Syst Analyt Grp, San Jose, CA 95134 USA
[2] Southern Methodist Univ, Dept Elect & Comp Engn, Dallas, TX 75205 USA
[3] GEIRI North Amer, San Jose, CA 95134 USA
关键词
Load modeling; Tensile stress; Computational modeling; Mathematical model; Parameter estimation; Voltage measurement; Reactive power; Dimensionality reduction; load modeling; parameter estimation; sensitivity analysis; tensor;
D O I
10.1109/TSG.2020.2978769
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Growing model complexities in load modeling have created high dimensionality in parameter estimations, and thereby substantially increasing associated computational costs. In this letter, a tensor-based method is proposed for identifying composite load modeling (CLM) parameters and for conducting a global sensitivity analysis. Tensor format and Fokker-Planck equations are used to estimate the power output response of CLM in the context of simultaneously varying parameters under their full parameter distribution ranges. The proposed tensor structure is shown as effective for tackling high-dimensional parameter estimation and for improving computational performances in load modeling through global sensitivity analysis.
引用
收藏
页码:2737 / 2740
页数:4
相关论文
共 50 条
  • [41] Higher-dimension Tensor Completion via Low-rank Tensor Ring Decomposition
    Yuan, Longhao
    Cao, Jianting
    Zhao, Xuyang
    Wu, Qiang
    Zhao, Qibin
    2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2018, : 1071 - 1076
  • [42] Low-Rank Tensor Modeling for Hyperspectral Unmixing Accounting for Spectral Variability
    Imbiriba, Tales
    Borsoi, Ricardo Augusto
    Moreira Bermudez, Jose Carlos
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (03): : 1833 - 1842
  • [43] Low-rank tensor completion for visual data recovery via the tensor train rank-1 decomposition
    Liu, Xiaohua
    Jing, Xiao-Yuan
    Tang, Guijin
    Wu, Fei
    Dong, Xiwei
    IET IMAGE PROCESSING, 2020, 14 (01) : 114 - 124
  • [44] Hyperspectral Superresolution Reconstruction via Decomposition of Low-Rank and Sparse Tensor
    Wu, Huajing
    Zhang, Kefei
    Wu, Suqin
    Zhang, Minghao
    Shi, Shuangshuang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 8943 - 8957
  • [45] Incomplete Multiview Clustering via Low-Rank Tensor Ring Completion
    Yu, Jinshi
    Huang, Haonan
    Duan, Qi
    Wang, Yafei
    Zou, Tao
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2023, 2023
  • [46] Low-rank nonnegative tensor approximation via alternating projections and sketching
    Sultonov, Azamat
    Matveev, Sergey
    Budzinskiy, Stanislav
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (02):
  • [47] Imbalanced low-rank tensor completion via latent matrix factorization
    Qiu, Yuning
    Zhou, Guoxu
    Zeng, Junhua
    Zhao, Qibin
    Xie, Shengli
    NEURAL NETWORKS, 2022, 155 : 369 - 382
  • [48] Low-rank nonnegative tensor approximation via alternating projections and sketching
    Azamat Sultonov
    Sergey Matveev
    Stanislav Budzinskiy
    Computational and Applied Mathematics, 2023, 42
  • [49] Compact implicit surface reconstruction via low-rank tensor approximation
    Pan, Maodong
    Tong, Weihua
    Chen, Falai
    COMPUTER-AIDED DESIGN, 2016, 78 : 158 - 167
  • [50] Nonlocal Low-Rank Tensor Factor Analysis for Image Restoration
    Zhang, Xinyuan
    Yuan, Xin
    Carin, Lawrence
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8232 - 8241