Global Sensitivity Analysis in Load Modeling via Low-Rank Tensor

被引:13
|
作者
Lin, You [1 ,2 ]
Wang, Yishen [3 ]
Wang, Jianhui [2 ]
Wang, Siqi [3 ]
Shi, Di [3 ]
机构
[1] GEIRI North Amer, AI & Syst Analyt Grp, San Jose, CA 95134 USA
[2] Southern Methodist Univ, Dept Elect & Comp Engn, Dallas, TX 75205 USA
[3] GEIRI North Amer, San Jose, CA 95134 USA
关键词
Load modeling; Tensile stress; Computational modeling; Mathematical model; Parameter estimation; Voltage measurement; Reactive power; Dimensionality reduction; load modeling; parameter estimation; sensitivity analysis; tensor;
D O I
10.1109/TSG.2020.2978769
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Growing model complexities in load modeling have created high dimensionality in parameter estimations, and thereby substantially increasing associated computational costs. In this letter, a tensor-based method is proposed for identifying composite load modeling (CLM) parameters and for conducting a global sensitivity analysis. Tensor format and Fokker-Planck equations are used to estimate the power output response of CLM in the context of simultaneously varying parameters under their full parameter distribution ranges. The proposed tensor structure is shown as effective for tackling high-dimensional parameter estimation and for improving computational performances in load modeling through global sensitivity analysis.
引用
收藏
页码:2737 / 2740
页数:4
相关论文
共 50 条
  • [21] Low-rank tensor completion via smooth matrix factorization
    Zheng, Yu-Bang
    Huang, Ting-Zhu
    Ji, Teng-Yu
    Zhao, Xi-Le
    Jiang, Tai-Xiang
    Ma, Tian-Hui
    APPLIED MATHEMATICAL MODELLING, 2019, 70 : 677 - 695
  • [22] Adaptive System Identification via Low-Rank Tensor Decomposition
    Auer, Christina
    Ploder, Oliver
    Paireder, Thomas
    Kovacs, Peter
    Lang, Oliver
    Huemer, Mario
    IEEE ACCESS, 2021, 9 (09): : 139028 - 139042
  • [23] Low-rank tensor train for tensor robust principal component analysis
    Yang, Jing-Hua
    Zhao, Xi-Le
    Ji, Teng-Yu
    Ma, Tian-Hui
    Huang, Ting-Zhu
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 367
  • [24] Remote Sensing Image Denoising via Low-Rank Tensor Approximation and Robust Noise Modeling
    Ma, Tian-Hui
    Xu, Zongben
    Meng, Deyu
    REMOTE SENSING, 2020, 12 (08)
  • [25] Modeling Hierarchical Seasonality Through Low-Rank Tensor Decompositions in Time Series Analysis
    Barsbey, Melih
    Cemgil, Ail Taylan
    IEEE ACCESS, 2023, 11 : 85770 - 85784
  • [26] Low-Rank Tensor Data Reconstruction and Denoising via ADMM: Algorithm and Convergence Analysis
    Popa, Jonathan
    Lou, Yifei
    Minkoff, Susan E.
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (02)
  • [27] Improved Robust Tensor Principal Component Analysis via Low-Rank Core Matrix
    Liu, Yipeng
    Chen, Longxi
    Zhu, Ce
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (06) : 1378 - 1389
  • [28] Low-Rank Tensor Data Reconstruction and Denoising via ADMM: Algorithm and Convergence Analysis
    Jonathan Popa
    Yifei Lou
    Susan E. Minkoff
    Journal of Scientific Computing, 2023, 97
  • [29] Low-Rank Tensor Completion Method for Implicitly Low-Rank Visual Data
    Ji, Teng-Yu
    Zhao, Xi-Le
    Sun, Dong-Lin
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1162 - 1166
  • [30] Iterative tensor eigen rank minimization for low-rank tensor completion
    Su, Liyu
    Liu, Jing
    Tian, Xiaoqing
    Huang, Kaiyu
    Tan, Shuncheng
    INFORMATION SCIENCES, 2022, 616 : 303 - 329