Piercing Translates and Homothets of a Convex Body

被引:8
|
作者
Dumitrescu, Adrian [2 ]
Jiang, Minghui [1 ]
机构
[1] Utah State Univ, Dept Comp Sci, Logan, UT 84322 USA
[2] Univ Wisconsin Milwaukee, Dept Comp Sci, Milwaukee, WI 53201 USA
基金
美国国家科学基金会;
关键词
Geometric transversals; Gallai-type problems; Packing and covering; Approximation algorithms; INEQUALITY LINKING PACKING; TIME APPROXIMATION SCHEMES; TRANSVERSAL NUMBERS; COVERING DENSITIES; POINT COVERS; PLANE; SETS;
D O I
10.1007/s00453-010-9410-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
According to a classical result of Grunbaum, the transversal number tau(F) of any family F of pairwise-intersecting translates or homothets of a convex body C in a"e (d) is bounded by a function of d. Denote by alpha(C) (resp. beta(C)) the supremum of the ratio of the transversal number tau(F) to the packing number nu(F) over all finite families F of translates (resp. homothets) of a convex body C in a"e (d) . Kim et al. recently showed that alpha(C) is bounded by a function of d for any convex body C in a"e (d) , and gave the first bounds on alpha(C) for convex bodies C in a"e (d) and on beta(C) for convex bodies C in the plane. Here we show that beta(C) is also bounded by a function of d for any convex body C in a"e (d) , and present new or improved bounds on both alpha(C) and beta(C) for various convex bodies C in a"e (d) for all dimensions d. Our techniques explore interesting inequalities linking the covering and packing densities of a convex body. Our methods for obtaining upper bounds are constructive and lead to efficient constant-factor approximation algorithms for finding a minimum-cardinality point set that pierces a set of translates or homothets of a convex body.
引用
收藏
页码:94 / 115
页数:22
相关论文
共 50 条
  • [31] On the Determination of Convex Bodies by Translates of Their Projections
    H. Groemer
    Geometriae Dedicata, 1997, 66 : 265 - 279
  • [32] TILING CONVEX-SETS BY TRANSLATES
    SALLEE, GT
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A202 - A202
  • [33] ON THE VOLUME OF UNIONS OF TRANSLATES OF A CONVEX SET
    REHDER, W
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (05): : 382 - 384
  • [34] THE KUPERBERG CONJECTURE FOR TRANSLATES OF CONVEX BODIES
    Prosanov, R.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 1017 - 1021
  • [35] Piercing intersecting convex sets
    Barany, Imre
    Dillon, Travis
    Palvolgyi, Domotor
    Varga, Daniel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 710 : 405 - 417
  • [36] PIERCING CONVEX-SETS
    ALON, N
    KLEITMAN, DJ
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (02) : 252 - 256
  • [37] Piercing All Translates of a Set of Axis-Parallel Rectangles
    Dumitrescu, Adrian
    Tkadlec, Josef
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):
  • [38] Piercing All Translates of a Set of Axis-Parallel Rectangles
    Dumitrescu, Adrian
    Tkadlec, Josef
    COMBINATORIAL ALGORITHMS, IWOCA 2021, 2021, 12757 : 295 - 309
  • [39] Body piercing
    Ferguson, H
    BRITISH MEDICAL JOURNAL, 1999, 319 (7225): : 1627 - 1629
  • [40] Body piercing
    Thiem, LJ
    AMERICAN JOURNAL OF NURSING, 2005, 105 (07) : 15 - 15