PIERCING CONVEX-SETS

被引:8
|
作者
ALON, N
KLEITMAN, DJ
机构
[1] BELLCORE,MORRISTOWN,NJ 07960
[2] MIT,DEPT MATH,CAMBRIDGE,MA 02139
关键词
D O I
10.1090/S0273-0979-1992-00304-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A family of sets has the (p, q) property if among any p members of the family some q have a nonempty intersection. It is shown that for every p greater-than-or-equal-to q greater-than-or-equal-to d + 1 there is a c = c(p, q, d) < infinity such that for every family F of compact, convex sets in R(d) that has the (p , q) property there is a set of at most c points in R(d) that intersects each member of F. This extends Helly's Theorem and settles an old problem of Hadwiger and Debrunner.
引用
收藏
页码:252 / 256
页数:5
相关论文
共 50 条
  • [1] TYPICAL CONVEX-SETS OF CONVEX-SETS
    SCHWARZ, T
    ZAMFIRESCU, T
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1987, 43 : 287 - 290
  • [2] PIERCING CONVEX-SETS AND THE HADWIGER-DEBRUNNER (P, Q)-PROBLEM
    ALON, N
    KLEITMAN, DJ
    ADVANCES IN MATHEMATICS, 1992, 96 (01) : 103 - 112
  • [3] 9 CONVEX-SETS DETERMINE A PENTAGON WITH CONVEX-SETS AS VERTICES
    BISZTRICZKY, T
    TOTH, GF
    GEOMETRIAE DEDICATA, 1989, 31 (01) : 89 - 104
  • [4] EXTREMAL CONVEX-SETS
    GROEMER, H
    MONATSHEFTE FUR MATHEMATIK, 1983, 96 (01): : 29 - 39
  • [5] ALMOST CONVEX-SETS
    VLASOV, LP
    MATHEMATICAL NOTES, 1975, 18 (3-4) : 791 - 799
  • [6] CONVEX-SETS OF CARDINALS
    TRUSS, J
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1973, 27 (NOV) : 577 - 599
  • [7] A DIFFERENCE OF CONVEX-SETS
    NURMINSKY, EA
    URYASIEV, SP
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1985, (01): : 59 - 62
  • [8] SEPARATION OF CONVEX-SETS
    CZYZOWICZ, J
    RIVERACAMPO, E
    URRUTIA, J
    DISCRETE APPLIED MATHEMATICS, 1994, 51 (03) : 325 - 328
  • [9] NOTES ON CONVEX-SETS
    VALDIVIA, M
    MANUSCRIPTA MATHEMATICA, 1979, 26 (04) : 381 - 386
  • [10] CONVEX-SETS IN A GRAPH
    SAMPATHKUMAR, E
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1984, 15 (10): : 1065 - 1071