Monotonicity of the eigenvalues of the two-particle Schrodinger operatoron a lattice

被引:1
|
作者
Abdullaev, J., I [1 ,2 ]
Khalkhuzhaev, A. M. [1 ,2 ]
Usmonov, L. S. [2 ]
机构
[1] Acad Sci Uzbek, Inst Math, Mirzo Ulugbek 81, Tashkent 100170, Uzbekistan
[2] Samarkand State Univ, Univ Blvd 15, Samarkand 140104, Uzbekistan
来源
NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS | 2021年 / 12卷 / 06期
关键词
two-particle Schrodinger operator; Birman-Schwinger principle; total quasimomentum; monotonicity of the eigenvalues; BOUND-STATES; SYSTEM;
D O I
10.17586/2220-8054-2021-12-6-657-663
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We consider the two-particle Schrodinger operator H (k), (k is an element of T-3 (-pi, pi](3) is the total quasimomentum of a system of two particles) corresponding to the Hamiltonian of the two-particle system on the three-dimensional lattice Z(3). It is proved that the number N (k) N (k((1)), k((2)), k((3))) of eigenvalues below the essential spectrum of the operator H (k) is nondecreasing function in each k((i)) is an element of [0, pi], i = 1, 2, 3. Under some additional conditions potential (v) over cap, the monotonicity of each eigenvalue z(n) (k) z(n)(k((1)), k((2)), k((3))) of the operator H (k) in k((i)) is an element of [0, pi] with other coordinates k being fixed is proved.
引用
收藏
页码:657 / 663
页数:7
相关论文
共 50 条
  • [41] The Number of Eigenvalues of the Three-Particle Schrodinger Operator on Three Dimensional Lattice
    Khalkhuzhaev, A. M.
    Abdullaev, J. I.
    Boymurodov, J. Kh.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (12) : 3486 - 3495
  • [42] On compact perturbation of two-particle Schrödinger operator on a lattice
    Muminov M.E.
    Khurramov A.M.
    Russian Mathematics, 2015, 59 (6) : 18 - 22
  • [43] The Infiniteness of the Number of Eigenvalues of the Schrodinger Operator of a System of Two Particles on a Lattice
    Abdullaev, J. I.
    Khalkhuzhaev, A. M.
    Makhmudov, Kh. Sh.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (10) : 4828 - 4845
  • [44] Exchange interactions and mass-eigenvalues of relativistic two-particle quantum mixtures
    Rupp, S
    Sorg, M
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2002, 117 (05): : 549 - 592
  • [45] Analytical solution of the Schrodinger equation of a laser-driven two-particle system
    Schwengelbeck, U
    PHYSICS LETTERS A, 1999, 253 (3-4) : 168 - 172
  • [46] On the spectrum of the two-particle Schrodinger operator with point potential: one dimensional case
    Kuljanov, Utkir N.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2023, 14 (05): : 505 - 510
  • [47] Boundary solutions of the two-electron Schrodinger equation at two-particle coalescences of the atomic systems
    Liverts, EZ
    Amusia, MY
    Krivec, R
    Mandelzweig, VB
    PHYSICAL REVIEW A, 2006, 73 (01):
  • [48] Ornstein-Zernike Asymptotics for a General "Two-Particle" Lattice Operator
    Boldrighini, C.
    Minlos, R. A.
    Pellegrinotti, A.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 305 (03) : 605 - 631
  • [49] Two-particle correlations in 1D-lattice systems with δ-interactions
    A. N. Kocharyan
    A. S. Saakyan
    Physics of the Solid State, 1998, 40 : 336 - 340
  • [50] Spectral properties of a two-particle hamiltonian on a d-dimensional lattice
    Muminov, M. I.
    Khurramov, A. M.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2016, 7 (05): : 880 - 887