Monotonicity of the eigenvalues of the two-particle Schrodinger operatoron a lattice

被引:1
|
作者
Abdullaev, J., I [1 ,2 ]
Khalkhuzhaev, A. M. [1 ,2 ]
Usmonov, L. S. [2 ]
机构
[1] Acad Sci Uzbek, Inst Math, Mirzo Ulugbek 81, Tashkent 100170, Uzbekistan
[2] Samarkand State Univ, Univ Blvd 15, Samarkand 140104, Uzbekistan
来源
NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS | 2021年 / 12卷 / 06期
关键词
two-particle Schrodinger operator; Birman-Schwinger principle; total quasimomentum; monotonicity of the eigenvalues; BOUND-STATES; SYSTEM;
D O I
10.17586/2220-8054-2021-12-6-657-663
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We consider the two-particle Schrodinger operator H (k), (k is an element of T-3 (-pi, pi](3) is the total quasimomentum of a system of two particles) corresponding to the Hamiltonian of the two-particle system on the three-dimensional lattice Z(3). It is proved that the number N (k) N (k((1)), k((2)), k((3))) of eigenvalues below the essential spectrum of the operator H (k) is nondecreasing function in each k((i)) is an element of [0, pi], i = 1, 2, 3. Under some additional conditions potential (v) over cap, the monotonicity of each eigenvalue z(n) (k) z(n)(k((1)), k((2)), k((3))) of the operator H (k) in k((i)) is an element of [0, pi] with other coordinates k being fixed is proved.
引用
收藏
页码:657 / 663
页数:7
相关论文
共 50 条