Multilevel Monte Carlo for stochastic differential equations with additive fractional noise

被引:23
|
作者
Kloeden, Peter E. [1 ]
Neuenkirch, Andreas [2 ]
Pavani, Raffaella [3 ]
机构
[1] Goethe Univ Frankfurt, Inst Math, D-60054 Frankfurt, Germany
[2] Tech Univ Dortmund, Fak Math, D-44227 Dortmund, Germany
[3] Politecn Milan, Dipartimento Matemat, I-20155 Milan, Italy
关键词
SDEs with additive noise; Fractional Brownian motion; Multilevel Monte Carlo; Euler scheme; Malliavin calculus; DRIVEN; APPROXIMATION; CONVERGENCE; SIMULATION; SDES;
D O I
10.1007/s10479-009-0663-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We adopt the multilevel Monte Carlo method introduced by M. Giles (Multilevel Monte Carlo path simulation, Oper. Res. 56(3):607-617, 2008) to SDEs with additive fractional noise of Hurst parameter H > 1/2. For the approximation of a Lipschitz functional of the terminal state of the SDE we construct a multilevel estimator based on the Euler scheme. This estimator achieves a prescribed root mean square error of order epsilon with a computational effort of order epsilon (-2).
引用
收藏
页码:255 / 276
页数:22
相关论文
共 50 条
  • [31] On quasi-Monte Carlo simulation of stochastic differential equations
    Hofmann, N
    Mathe, P
    MATHEMATICS OF COMPUTATION, 1997, 66 (218) : 573 - 589
  • [32] Probabilistic solutions of fractional differential and partial differential equations and their Monte Carlo simulations
    Oraby, T.
    Suazo, E.
    Arrubla, H.
    CHAOS SOLITONS & FRACTALS, 2023, 166
  • [33] Probabilistic solutions of fractional differential and partial differential equations and their Monte Carlo simulations
    Oraby, T.
    Suazo, E.
    Arrubla, H.
    CHAOS SOLITONS & FRACTALS, 2023, 166
  • [34] STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY AN ADDITIVE FRACTIONAL BROWNIAN SHEET
    El Barrimi, Oussama
    Ouknine, Youssef
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (02) : 479 - 489
  • [35] A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise
    Neuenkirch A.
    Tindel S.
    Statistical Inference for Stochastic Processes, 2014, 17 (1) : 99 - 120
  • [36] Weak exponential schemes for stochastic differential equations with additive noise
    Mora, CM
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2005, 25 (03) : 486 - 506
  • [37] Spectral Element Methods for Stochastic Differential Equations with Additive Noise
    Zhang, Chao
    Gu, Dongya
    Tao, Dongya
    JOURNAL OF MATHEMATICAL STUDY, 2018, 51 (01): : 76 - 88
  • [38] Stochastic Fractional Hamiltonian Monte Carlo
    Ye, Nanyang
    Zhu, Zhanxing
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 3019 - 3025
  • [39] THE NUMERICAL STABILITY OF STOCHASTIC ORDINARY DIFFERENTIAL EQUATIONS WITH ADDITIVE NOISE
    Buckwar, E.
    Riedler, M. G.
    Kloeden, P. E.
    STOCHASTICS AND DYNAMICS, 2011, 11 (2-3) : 265 - 281
  • [40] An averaging principle for fractional stochastic differential equations with Levy noise
    Xu, Wenjing
    Duan, Jinqiao
    Xu, Wei
    CHAOS, 2020, 30 (08)