Multilevel Monte Carlo for stochastic differential equations with additive fractional noise

被引:23
|
作者
Kloeden, Peter E. [1 ]
Neuenkirch, Andreas [2 ]
Pavani, Raffaella [3 ]
机构
[1] Goethe Univ Frankfurt, Inst Math, D-60054 Frankfurt, Germany
[2] Tech Univ Dortmund, Fak Math, D-44227 Dortmund, Germany
[3] Politecn Milan, Dipartimento Matemat, I-20155 Milan, Italy
关键词
SDEs with additive noise; Fractional Brownian motion; Multilevel Monte Carlo; Euler scheme; Malliavin calculus; DRIVEN; APPROXIMATION; CONVERGENCE; SIMULATION; SDES;
D O I
10.1007/s10479-009-0663-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We adopt the multilevel Monte Carlo method introduced by M. Giles (Multilevel Monte Carlo path simulation, Oper. Res. 56(3):607-617, 2008) to SDEs with additive fractional noise of Hurst parameter H > 1/2. For the approximation of a Lipschitz functional of the terminal state of the SDE we construct a multilevel estimator based on the Euler scheme. This estimator achieves a prescribed root mean square error of order epsilon with a computational effort of order epsilon (-2).
引用
收藏
页码:255 / 276
页数:22
相关论文
共 50 条
  • [21] Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance
    An, Dong
    Linden, Noah
    Liu, Jin-Peng
    Montanaro, Ashley
    Shao, Changpeng
    Wang, Jiasu
    QUANTUM, 2021, 5
  • [22] Exponential Euler method for stiff stochastic differential equations with additive fractional Brownian noise
    Kamrani, Minoo
    Debrabant, Kristian
    Jamshidi, Nahid
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2024, 101 (03) : 357 - 371
  • [23] LAN property for stochastic differential equations with additive fractional noise and continuous time observation
    Liu, Yanghui
    Nualart, Eulalia
    Tindel, Samy
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (08) : 2880 - 2902
  • [24] An Efficient Solution for Stochastic Fractional Partial Differential Equations with Additive Noise by a Meshless Method
    Darehmiraki M.
    International Journal of Applied and Computational Mathematics, 2018, 4 (1)
  • [25] Stability of stochastic differential equations with additive persistent noise
    Mateos-Nunez, David
    Cortes, Jorge
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 5427 - 5432
  • [26] Estimation of several parameters in discretely-observed stochastic differential equations with additive fractional noise
    Haress, El Mehdi
    Richard, Alexandre
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2024, 27 (03) : 641 - 691
  • [27] Monte Carlo Estimation of the Solution of Fractional Partial Differential Equations
    Vassili Kolokoltsov
    Feng Lin
    Aleksandar Mijatović
    Fractional Calculus and Applied Analysis, 2021, 24 : 278 - 306
  • [28] MONTE CARLO ESTIMATION OF THE SOLUTION OF FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS
    Kolokoltsov, Vassili
    Lin, Feng
    Mijatovic, Aleksandar
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (01) : 278 - 306
  • [29] Estimating the parameters of stochastic differential equations by Monte Carlo methods
    Hurn, AS
    Lindsay, KA
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1997, 43 (3-6) : 495 - 501
  • [30] UNBIASED MONTE CARLO ESTIMATE OF STOCHASTIC DIFFERENTIAL EQUATIONS EXPECTATIONS
    Doumbia, Mahamadou
    Oudjane, Nadia
    Warin, Xavier
    ESAIM-PROBABILITY AND STATISTICS, 2017, 21 : 56 - 87