A Short-Term Prediction Model of PM2.5 Concentration Based on Deep Learning and Mode Decomposition Methods

被引:12
|
作者
Wei, Jun [1 ,2 ]
Yang, Fan [3 ]
Ren, Xiao-Chen [4 ]
Zou, Silin [4 ]
机构
[1] Sun Yat Sen Univ, Sch Atmospher Sci, Guangdong Prov Key Lab Climate Change & Nat Disas, Guangzhou 510275, Peoples R China
[2] Southern Marine Sci & Engn Guangdong Lab Zhuhai, Guangzhou 519082, Peoples R China
[3] Zhuhai Marine Environm Monitoring Cent Stn State, Zhuhai 519015, Peoples R China
[4] Peking Univ, Dept Atmospher Sci, Beijing 100871, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 15期
基金
中国国家自然科学基金;
关键词
PM2.5; neural network; machine learning; mode decomposition; AIR-POLLUTION; ENSEMBLE;
D O I
10.3390/app11156915
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Based on a set of deep learning and mode decomposition methods, a short-term prediction model for PM2.5 concentration for Beijing city is established in this paper. An ensemble empirical mode decomposition (EEMD) algorithm is first used to decompose the original PM2.5 timeseries to several high- to low-frequency intrinsic mode functions (IMFs). Each IMF component is then trained and predicted by a combination of three neural networks: back propagation network (BP), long short-term memory network (LSTM), and a hybrid network of a convolutional neural network (CNN) + LSTM. The results showed that both BP and LSTM are able to fit the low-frequency IMFs very well, and the total prediction errors of the summation of all IMFs are remarkably reduced from 21 g/m(3) in the single BP model to 4.8 g/m(3) in the EEMD + BP model. Spatial information from 143 stations surrounding Beijing city is extracted by CNN, which is then used to train the CNN+LSTM. It is found that, under extreme weather conditions of PM2.5 < 35 g/m(3) and PM2.5 > 150 g/m(3), the prediction errors of the CNN + LSTM model are improved by similar to 30% compared to the single LSTM model. However, the prediction of the very high-frequency IMF mode (IMF-1) remains a challenge for all neural networks, which might be due to microphysical turbulences and chaotic processes that cannot be resolved by the above-mentioned neural networks based on variable-variable relationship.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Prediction of PM2.5 Concentration Based on Deep Learning for High-Dimensional Time Series
    Hu, Jie
    Jia, Yuan
    Jia, Zhen-Hong
    He, Cong-Bing
    Shi, Fei
    Huang, Xiao-Hui
    APPLIED SCIENCES-BASEL, 2024, 14 (19):
  • [42] Fine-grained prediction of PM2.5 concentration based on multisource data and deep learning
    Xu, Xiaodi
    Tong, Ting
    Zhang, Wen
    Meng, Lingkui
    ATMOSPHERIC POLLUTION RESEARCH, 2020, 11 (10) : 1728 - 1737
  • [43] Time series prediction of the chemical components of PM2.5 based on a deep learning model
    Liu K.
    Zhang Y.
    He H.
    Xiao H.
    Wang S.
    Zhang Y.
    Li H.
    Qian X.
    Chemosphere, 2023, 342
  • [44] A nested machine learning approach to short-term PM2.5 prediction in metropolitan areas using PM2.5 data from different sensor networks
    Li, Jing
    Crooks, James
    Murdock, Jennifer
    de Souza, Priyanka
    Hohs, Kirk
    Obermann, Bill
    Stockman, Tehya
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 873
  • [45] The Prediction of PM2.5 Concentration Using Transfer Learning Based on ADGRU
    Xinbiao Lu
    Chunlin Ye
    Miaoxuan Shan
    Buzhi Qin
    Ying Wang
    Hao Xing
    Xupeng Xie
    Zecheng Liu
    Water, Air, & Soil Pollution, 2023, 234
  • [46] Development of a daily PM10 and PM2.5 prediction system using a deep long short-term memory neural network model
    Kim, Hyun S.
    Park, Inyoung
    Song, Chul H.
    Lee, Kyunghwa
    Yun, Jae W.
    Kim, Hong K.
    Jeon, Moongu
    Lee, Jiwon
    Han, Kyung M.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (20) : 12935 - 12951
  • [47] The Prediction of PM2.5 Concentration Using Transfer Learning Based on ADGRU
    Lu, Xinbiao
    Ye, Chunlin
    Shan, Miaoxuan
    Qin, Buzhi
    Wang, Ying
    Xing, Hao
    Xie, Xupeng
    Liu, Zecheng
    WATER AIR AND SOIL POLLUTION, 2023, 234 (04):
  • [48] PM2.5 concentration prediction using a whale optimization algorithm based hybrid deep learning model in Beijing, China
    Wei, Qing
    Zhang, Huijin
    Yang, Ju
    Niu, Bin
    Xu, Zuxin
    ENVIRONMENTAL POLLUTION, 2025, 371
  • [49] A Multivariate Short-Term Trend Information-Based Time Series Forecasting Algorithm for PM2.5 Daily Concentration Prediction
    Wang, Ping
    He, Xuran
    Feng, Hongyinping
    Zhang, Guisheng
    SUSTAINABILITY, 2023, 15 (23)
  • [50] 24-Hour prediction of PM2.5 concentrations by combining empirical mode decomposition and bidirectional long short-term memory neural network
    Teng, Mengfan
    Li, Siwei
    Xing, Jia
    Song, Ge
    Yang, Jie
    Dong, Jiaxin
    Zeng, Xiaoyue
    Qin, Yaming
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 821