PM2.5 concentration prediction using a whale optimization algorithm based hybrid deep learning model in Beijing, China

被引:0
|
作者
Wei, Qing [1 ,2 ]
Zhang, Huijin [1 ,2 ]
Yang, Ju [3 ]
Niu, Bin [4 ]
Xu, Zuxin [1 ,2 ]
机构
[1] Tongji Univ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China
[2] Tongji Univ, Key Lab Urban Water Supply, State Key Lab Pollut Control & Resource Reuse,Mini, Water Saving & Water Environm Governance Yangtze R, Shanghai 200092, Peoples R China
[3] Guangdong Inst Water Resources & Hydropower Res, Guangzhou 510000, Peoples R China
[4] PowerChina East China Survey Design & Res Inst Co, Hangzhou 310000, Peoples R China
基金
中国国家自然科学基金;
关键词
PM; 2.5; prediction; Whale optimization algorithm; Convolutional neural network; Long short-term memory; Shapley additive explanation; POLLUTION; IMPACT;
D O I
10.1016/j.envpol.2025.125953
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
PM2.5 is a significant global atmospheric pollutant impacting visibility, climate, and public health. Accurate prediction of PM2.5 concentrations is critical for assessing air pollution risks and providing early warnings for effective management. This study proposes a novel hybrid machine learning model that combines the whale optimization algorithm (WOA) with a convolutional neural network (CNN), long short-term memory (LSTM), and an attention mechanism (AM) to predict daily PM2.5 concentrations. Tested with meteorological and air pollution daily data from 2014 to 2018, the WOA-CNN-LSTM-AM model demonstrates substantial improvements. It achieves MAE, RMSE, MBE, and R2 values of 14.29, 21.96, -0.23, and 0.93, respectively, showing a reduction in prediction errors by 39% compared to CNN and 34% compared to LSTM models. In the medium-term forecast, the accuracy of the hybrid model is 30%-54% over WOA-CNN-LSTM and 26%-39% over CNN-LSTM-AM. The R2 value decreases by 2.5% from the 1-day to 5-day forecast, maintaining high accuracy. SHAP analysis reveals that NO2 and CO are the primary drivers for PM2.5 predictions. This study provides a reliable tool for short and medium-term PM2.5 prediction and air pollution control.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A hybrid optimization prediction model for PM2.5 based on VMD and deep learning
    Zeng, Tao
    Xu, Liping
    Liu, Yahui
    Liu, Ruru
    Luo, Yutian
    Xi, Yunyun
    ATMOSPHERIC POLLUTION RESEARCH, 2024, 15 (07)
  • [2] A deep learning model for PM2.5 concentration prediction
    Zhang, Zhendong
    Ma, Xiang
    Yan, Ke
    2021 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS DASC/PICOM/CBDCOM/CYBERSCITECH 2021, 2021, : 428 - 433
  • [3] Citywide PM2.5 Concentration Prediction Using Deep Learning Model
    Yang, Xiaonuo
    Sun, Xiao
    Liu, Na
    Chai, Yueting
    2024 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE, SEAI 2024, 2024, : 247 - 251
  • [4] Forecasting of PM2.5 Concentration in Beijing Using Hybrid Deep Learning Framework Based on Attention Mechanism
    Li, Dong
    Liu, Jiping
    Zhao, Yangyang
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [5] An Improved Hybrid Transfer Learning-Based Deep Learning Model for PM2.5 Concentration Prediction
    Ni, Jianjun
    Chen, Yan
    Gu, Yu
    Fang, Xiaolong
    Shi, Pengfei
    APPLIED SCIENCES-BASEL, 2022, 12 (07):
  • [6] Apply a deep learning hybrid model optimized by an Improved Chimp Optimization Algorithm in PM2.5 prediction
    Wei, Ming
    Du, Xiaopeng
    MACHINE LEARNING WITH APPLICATIONS, 2025, 19
  • [7] PM2.5 Prediction Based on the CEEMDAN Algorithm and a Machine Learning Hybrid Model
    Ban, Wenchao
    Shen, Liangduo
    SUSTAINABILITY, 2022, 14 (23)
  • [8] A hybrid Daily PM2.5 concentration prediction model based on secondary decomposition algorithm, mode recombination technique and deep learning
    Wei Sun
    Zhiwei Xu
    Stochastic Environmental Research and Risk Assessment, 2022, 36 : 1143 - 1162
  • [9] A hybrid Daily PM2.5 concentration prediction model based on secondary decomposition algorithm, mode recombination technique and deep learning
    Sun, Wei
    Xu, Zhiwei
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (04) : 1143 - 1162
  • [10] Machine-learning-based model and simulation analysis of PM2.5 concentration prediction in Beijing
    Qu Y.
    Qian X.
    Song H.-Q.
    He J.
    Li J.-H.
    Xiu H.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2019, 41 (03): : 401 - 407