In situ monitoring of chondrocyte response to bioactive scaffolds using Raman spectroscopy

被引:10
|
作者
Jones, JR
Vats, A
Notingher, L
Gough, JE
Tolley, NS
Polak, JM
Hench, LL
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2BP, England
[2] Univ London Imperial Coll Sci Technol & Med, Fac Med, Tissue Engn & Regenerat Med Ctr, Chelsea & Westminster Hosp, London SW10 9NH, England
[3] St Marys Hosp, London W2, England
[4] Univ Manchester, Manchester Mat Sci Ctr, Manchester M1 7HS, Lancs, England
[5] Univ Manchester, Manchester M1 7HS, Lancs, England
来源
BIOCERAMICS 17 | 2005年 / 284-286卷
关键词
bioactive glass; cartilage; chondrocytes; Raman spectroscopy; scaffolds;
D O I
10.4028/www.scientific.net/KEM.284-286.623
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Septal cartilage is widely used for the repair of soft tissue defects in the head, neck and nose. Tissue Engineering techniques are being investigated to create cartilage in vitro by seeding appropriate cells on resorbable scaffolds. In this study, human chondrocytes were cultured on macroporous bioactive glass foam scaffolds. The aim was to investigate how Raman spectroscopy could be used as a non-invasive technique to monitor the response of chondrocytes to a 3D scaffold in real time. The spectra were compared to scanning electron microscope (SEM) micrographs and immunohistochemistry results.
引用
收藏
页码:623 / 626
页数:4
相关论文
共 50 条
  • [31] In Situ Raman Spectroscopy for Cure Monitoring of Cationic Photopolymerizations of Divinyl Ethers
    Nelson, E. W.
    Scranton, A. B.
    Journal of Raman Spectroscopy, 27 (02):
  • [32] In situ monitoring of enzyme-catalyzed (co)polymerizations by Raman spectroscopy
    Hunley, Matthew T.
    Bhangale, Atul S.
    Kundu, Santanu
    Johnson, Peter M.
    Waters, Michael S.
    Gross, Richard A.
    Beers, Kathryn L.
    POLYMER CHEMISTRY, 2012, 3 (02) : 314 - 318
  • [33] In situ Raman spectroscopy for cure monitoring of cationic photopolymerizations of divinyl ethers
    Nelson, EW
    Scranton, AB
    JOURNAL OF RAMAN SPECTROSCOPY, 1996, 27 (02) : 137 - 144
  • [34] In situ monitoring of cell death using Raman microspectroscopy
    Verrier, S
    Notingher, I
    Polak, JM
    Hench, LL
    BIOPOLYMERS, 2004, 74 (1-2) : 157 - 162
  • [35] In-situ monitoring of the selective etching of antimonides in GaSb/AlSb/InAs heterostructures using Raman spectroscopy
    Gatzke, C
    Webb, SJ
    Fobelets, K
    Stradling, RA
    COMPOUND SEMICONDUCTORS 1997, 1998, 156 : 337 - 340
  • [36] In-situ monitoring of the selective etching of antimonides in GaSb/AlSb/InAs heterostructures using Raman spectroscopy
    Gatzke, C
    Webb, SJ
    Fobelets, K
    Stradling, RA
    1997 IEEE INTERNATIONAL SYMPOSIUM ON COMPOUND SEMICONDUCTORS, 1998, : 337 - 340
  • [37] In-situ monitoring of calcium carbonate scale progression on reverse osmosis membranes using Raman spectroscopy
    Park, Danielle J.
    Supekar, Omkar D.
    Greenberg, Alan R.
    Gopinath, Juliet T.
    Bright, Victor M.
    DESALINATION AND WATER TREATMENT, 2022, 273 : 92 - 103
  • [38] In Situ Monitoring of Cocrystallization of Salicylic Acid-4,4′-Dipyridyl in Solution Using Raman Spectroscopy
    Lee, Kyeong-Sill
    Kim, Kwang-Joo
    Ulrich, Joachim
    CRYSTAL GROWTH & DESIGN, 2014, 14 (06) : 2893 - 2899
  • [39] Rapid monitoring of antibiotics using Raman and surface enhanced Raman spectroscopy
    Clarke, SJ
    Littleford, RE
    Smith, WE
    Goodacre, R
    ANALYST, 2005, 130 (07) : 1019 - 1026
  • [40] Surface-Enhanced Raman Spectroscopy for Monitoring Extravirgin Olive Oil Bioactive Components
    Camerlingo, C.
    Portaccio, M.
    Delfino, I.
    Lepore, M.
    JOURNAL OF CHEMISTRY, 2019, 2019