In situ monitoring of chondrocyte response to bioactive scaffolds using Raman spectroscopy

被引:10
|
作者
Jones, JR
Vats, A
Notingher, L
Gough, JE
Tolley, NS
Polak, JM
Hench, LL
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2BP, England
[2] Univ London Imperial Coll Sci Technol & Med, Fac Med, Tissue Engn & Regenerat Med Ctr, Chelsea & Westminster Hosp, London SW10 9NH, England
[3] St Marys Hosp, London W2, England
[4] Univ Manchester, Manchester Mat Sci Ctr, Manchester M1 7HS, Lancs, England
[5] Univ Manchester, Manchester M1 7HS, Lancs, England
来源
BIOCERAMICS 17 | 2005年 / 284-286卷
关键词
bioactive glass; cartilage; chondrocytes; Raman spectroscopy; scaffolds;
D O I
10.4028/www.scientific.net/KEM.284-286.623
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Septal cartilage is widely used for the repair of soft tissue defects in the head, neck and nose. Tissue Engineering techniques are being investigated to create cartilage in vitro by seeding appropriate cells on resorbable scaffolds. In this study, human chondrocytes were cultured on macroporous bioactive glass foam scaffolds. The aim was to investigate how Raman spectroscopy could be used as a non-invasive technique to monitor the response of chondrocytes to a 3D scaffold in real time. The spectra were compared to scanning electron microscope (SEM) micrographs and immunohistochemistry results.
引用
收藏
页码:623 / 626
页数:4
相关论文
共 50 条
  • [1] Quantitative In Situ Monitoring of Parahydrogen Fraction Using Raman Spectroscopy
    Parrott, Andrew J.
    Dallin, Paul
    Andrews, John
    Richardson, Peter M.
    Semenova, Olga
    Halse, Meghan E.
    Duckett, Simon B.
    Nordon, Alison
    APPLIED SPECTROSCOPY, 2019, 73 (01) : 88 - 97
  • [2] In situ Monitoring of a Heterogeneous Etherification Reaction Using Quantitative Raman Spectroscopy
    Hart, Richard J.
    Pedge, Nicholas I.
    Steven, Alan R.
    Sutcliffe, Kevin
    ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2015, 19 (01) : 196 - 202
  • [3] In situ monitoring of cocrystals in formulation development using lowfrequency Raman spectroscopy
    Otaki, Takashi
    Tanabe, Yuta
    Kojima, Takashi
    Miura, Masaru
    Ikeda, Yukihiro
    Koide, Tatsuo
    Fukami, Toshiro
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2018, 542 (1-2) : 56 - 65
  • [4] In situ bioprocess monitoring of Escherichia coli bioreactions using Raman spectroscopy
    Lee, HLT
    Boccazzi, P
    Gorret, N
    Ram, RJ
    Sinskey, AJ
    VIBRATIONAL SPECTROSCOPY, 2004, 35 (1-2) : 131 - 137
  • [5] In situ monitoring of pH titration by Raman spectroscopy
    Elbagerma, M. A.
    Azimi, Gholamhassan
    Edwards, H. G. M.
    Alajtal, A. I.
    Scowen, I. J.
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2010, 75 (05) : 1403 - 1410
  • [6] Neural tissue engineering: From bioactive scaffolds and in situ monitoring to regeneration
    Gong, Bowen
    Zhang, Xindan
    Al Zahrani, Ahmed
    Gao, Wenwen
    Ma, Guolin
    Zhang, Liqun
    Xue, Jiajia
    EXPLORATION, 2022, 2 (03):
  • [7] In-situ monitoring of a polymer cure using dynamic rheometry and Raman spectroscopy
    Rose, J
    Osbaldiston, R
    Smith, W
    Farquharson, S
    Shaw, MT
    CONFERENCE PROCEEDINGS AT ANTEC '98: PLASTICS ON MY MIND, VOLS I-3: VOL I; PROCESSING, VOL II; SPECIAL AREAS, VOL III; MATERIALS, 1998, 44 : 939 - 944
  • [8] In-situ monitoring of semiconductor growth by Raman spectroscopy
    Kontos, AG
    Hinrichs, K
    Papadimitriou, D
    Esser, N
    ISTM/2003: 5TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-6, CONFERENCE PROCEEDINGS, 2003, : 3511 - 3513
  • [9] Water monitoring by optofluidic Raman spectroscopy for in situ applications
    Persichetti, Gianluca
    Bernini, Romeo
    TALANTA, 2016, 155 : 145 - 152
  • [10] Monitoring of monocytic host response by Raman spectroscopy
    Kostudis, S.
    Hartkopf, M.
    Claus, R. A.
    Popp, J.
    Neugebauer, U.
    INFECTION, 2011, 39 : S103 - S104