Asymptotic Properties and Variance Estimators of the M-quantile Regression Coefficients Estimators

被引:14
|
作者
Bianchi, Annamaria [1 ]
Salvati, Nicola [2 ]
机构
[1] Univ Bergamo, Dept Management Econ & Quantitat Methods, I-24127 Bergamo, Italy
[2] Univ Pisa, DEM, Pisa, Italy
关键词
Influence function; M-estimation; Taylor expansion; Simulation experiments; Small area estimation; LINEAR-REGRESSION; ROBUST REGRESSION;
D O I
10.1080/03610926.2013.791375
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
M-quantile regression is defined as a quantile-like generalization of robust regression based on influence functions. This article outlines asymptotic properties for the M-quantile regression coefficients estimators in the case of i.i.d. data with stochastic regressors, paying attention to adjustments due to the first-step scale estimation. A variance estimator of the M-quantile regression coefficients based on the sandwich approach is proposed. Empirical results show that this estimator appears to perform well under different simulated scenarios. The sandwich estimator is applied in the small area estimation context for the estimation of the mean squared error of an estimator for the small area means. The results obtained improve previous findings, especially in the case of heteroskedastic data.
引用
收藏
页码:2416 / 2429
页数:14
相关论文
共 50 条
  • [41] Nonparametric M-quantile regression using penalised splines
    Pratesi, Monica
    Ranalli, M. Giovanna
    Salvati, Nicola
    JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (03) : 287 - 304
  • [42] Quantile regression with ReLU Networks: Estimators and minimax rates
    Padilla, Oscar Hernan Madrid
    Tansey, Wesley
    Chen, Yanzhen
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [43] Decentralization estimators for instrumental variable quantile regression models
    Kaido, Hiroaki
    Wuthrich, Kaspar
    QUANTITATIVE ECONOMICS, 2021, 12 (02) : 443 - 475
  • [44] ROBUST TEST BASED ON NONLINEAR REGRESSION QUANTILE ESTIMATORS
    Choi, Seung Hoe
    Kim, Kyung Joong
    Lee, Myung Sook
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 20 (01): : 145 - 159
  • [45] Quantile regression with ReLU Networks: Estimators and minimax rates
    Padilla, Oscar Hernan Madrid
    Tansey, Wesley
    Chen, Yanzhen
    Journal of Machine Learning Research, 2022, 23
  • [46] ASYMPTOTIC RELATION OF M-ESTIMATORS AND P-ESTIMATORS OF LOCATION
    HANOUSEK, J
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1988, 6 (03) : 277 - 284
  • [47] THE EFFICIENCIES OF ALTERNATIVE ESTIMATORS FOR AN ASYMPTOTIC REGRESSION EQUATION
    FINNEY, DJ
    BIOMETRIKA, 1958, 45 (3-4) : 370 - 388
  • [48] ASYMPTOTIC PROPERTIES OF ESTIMATORS IN ALMOST-LINEAR REGRESSION-MODEL
    KOVACHEV, BP
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1989, 42 (03): : 37 - 39
  • [49] COX PERIODIC REGRESSION-MODEL - ASYMPTOTIC PROPERTIES OF 2 ESTIMATORS
    PONS, O
    DETURCKHEIM, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 304 (12): : 347 - 350
  • [50] Asymptotic properties for LS estimators in EV regression model with dependent errors
    Fan, Guo-Liang
    Liang, Han-Ying
    Wang, Jiang-Feng
    Xu, Hong-Xia
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2010, 94 (01) : 89 - 103