Asymptotic Properties and Variance Estimators of the M-quantile Regression Coefficients Estimators

被引:14
|
作者
Bianchi, Annamaria [1 ]
Salvati, Nicola [2 ]
机构
[1] Univ Bergamo, Dept Management Econ & Quantitat Methods, I-24127 Bergamo, Italy
[2] Univ Pisa, DEM, Pisa, Italy
关键词
Influence function; M-estimation; Taylor expansion; Simulation experiments; Small area estimation; LINEAR-REGRESSION; ROBUST REGRESSION;
D O I
10.1080/03610926.2013.791375
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
M-quantile regression is defined as a quantile-like generalization of robust regression based on influence functions. This article outlines asymptotic properties for the M-quantile regression coefficients estimators in the case of i.i.d. data with stochastic regressors, paying attention to adjustments due to the first-step scale estimation. A variance estimator of the M-quantile regression coefficients based on the sandwich approach is proposed. Empirical results show that this estimator appears to perform well under different simulated scenarios. The sandwich estimator is applied in the small area estimation context for the estimation of the mean squared error of an estimator for the small area means. The results obtained improve previous findings, especially in the case of heteroskedastic data.
引用
收藏
页码:2416 / 2429
页数:14
相关论文
共 50 条
  • [21] A CLASS OF ESTIMATORS OF VARIANCE OF THE REGRESSION ESTIMATOR
    Bansal, M. L.
    Javed, M.
    Khanna, Nidhi
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2011, 7 (01): : 275 - 279
  • [22] A COMPARISON OF VARIANCE ESTIMATORS IN NONPARAMETRIC REGRESSION
    CARTER, CK
    EAGLESON, GK
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1992, 54 (03): : 773 - 780
  • [23] Expectile and M-quantile regression for panel data
    Danilevicz, Ian Meneghel
    Reisen, Valderio Anselmo
    Bondon, Pascal
    STATISTICS AND COMPUTING, 2024, 34 (03)
  • [24] Asymptotic variance of M-estimators for dependent Gaussian random variables
    Genton, MG
    STATISTICS & PROBABILITY LETTERS, 1998, 38 (03) : 255 - 261
  • [25] Estimating asymptotic variance of M-estimators in ranked set sampling
    Mahdizadeh, M.
    Zamanzade, Ehsan
    COMPUTATIONAL STATISTICS, 2020, 35 (04) : 1785 - 1803
  • [26] Estimating asymptotic variance of M-estimators in ranked set sampling
    M. Mahdizadeh
    Ehsan Zamanzade
    Computational Statistics, 2020, 35 : 1785 - 1803
  • [27] ASYMPTOTIC PROPERTIES OF ONE-STEP WEIGHTED M-ESTIMATORS WITH APPLICATIONS TO REGRESSION
    Linke, Yu Yu
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2018, 62 (03) : 373 - 398
  • [28] The asymptotic properties for the estimators in a semiparametric regression model based on m-asymptotic negatively associated errors
    Shao, Wanyue
    Ye, Yuxin
    Wang, Miaomaio
    Wang, Xuejun
    FILOMAT, 2023, 37 (08) : 2437 - 2454
  • [29] Asymptotics for penalized spline estimators in quantile regression
    Yoshida, Takuma
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (14) : 4815 - 4834
  • [30] Asymptotic Analysis of Regression Quantile Estimators for Real-Valued Chirp Signal Model
    Shubha Sankar Banerjee
    Amit Mitra
    Rachita Mondal
    Circuits, Systems, and Signal Processing, 2024, 43 : 1053 - 1100