Temperature-Driven Self-Doping in Magnetite

被引:9
|
作者
Elnaggar, Hebatalla [1 ,2 ]
Graas, Silvester [1 ]
Lafuerza, Sara [3 ]
Detlefs, Blanka [3 ]
Tabis, Wojciech [4 ,5 ]
Gala, Mateusz A. [4 ]
Ismail, Ahmed [1 ]
van der Eerden, Ad [1 ]
Sikora, Marcin [6 ]
Honig, Jurgen M. [7 ]
Glatzel, P. [3 ]
de Groot, Frank [1 ]
机构
[1] Debye Inst Nanomat Sci, NL-3584 CG Utrecht, Netherlands
[2] Sorbonne Univ, CNRS UMR 7590, Inst Mineral Phys Mat & Cosmochimi, 4 Pl Jussieu, F-75005 Paris, France
[3] European Synchrotron Radiat Facil, 71 Ave Martyrs,CS 40220, F-38043 Grenoble 9, France
[4] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Mickiewicza 30, PL-30059 Krakow, Poland
[5] TU Wien, Inst Solid State Phys, A-1040 Vienna, Austria
[6] AGH Univ Sci & Technol, Acad Ctr Mat & Nanotechnol, Mickiewicza 30, PL-30059 Krakow, Poland
[7] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
基金
欧洲研究理事会;
关键词
X-RAY-ABSORPTION; CATION DIFFUSION; VERWEY TRANSITION; PRE-EDGE; DEFECTS; POINT; CONDUCTION; FE3O4; FE;
D O I
10.1103/PhysRevLett.127.186402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Magnetite is one of the most fascinating materials exhibiting the enigmatic first-order Verwey transition which is conventionally manipulated through chemical doping. Here, we show that heating magnetite results in a spontaneous charge reordering and, consequently, a hole self-doping effect at the octahedral sublattice. Core-level x-ray spectroscopy measurements combined with theory uncovers that there are three regimes of self-doping that map the temperature dependence of the electrical conductivity and magnetism up to the Curie temperature. Our results provide an elegant analogy between the effect of chemical doping and temperature-driven self-doping on trimerons in magnetite.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Spontaneous Growth of Strain-Free Magnetite Nanocrystals via Temperature-Driven Dewetting
    Takahashi, Ryota
    Misumi, Hikaru
    Yamamoto, Takahisa
    Lippmaa, Mikk
    CRYSTAL GROWTH & DESIGN, 2014, 14 (03) : 1264 - 1271
  • [2] Temperature Tunable Self-Doping in Stable Diradicaloid Thin-Film Devices
    Zhang, Yuan
    Zheng, Yonghao
    Zhou, Huiqiong
    Miao, Mao-Sheng
    Wudl, Fred
    Thuc-Quyen Nguyen
    ADVANCED MATERIALS, 2015, 27 (45) : 7412 - 7419
  • [3] Temperature-driven nonclassical light
    Pennini, F.
    Plastino, A.
    Ferri, G. L.
    PHYSICAL REVIEW E, 2013, 87 (06):
  • [4] Self-doping effects in epitaxially grown graphene
    Siegel, D. A.
    Zhou, S. Y.
    El Gabaly, F.
    Fedorov, A. V.
    Schmid, A. K.
    Lanzara, A.
    APPLIED PHYSICS LETTERS, 2008, 93 (24)
  • [5] Self-Doping during Silicon Homoepitaxy.
    Puga, V.A.
    Neorganiceskie materialy, 1985, 21 (04): : 517 - 521
  • [6] COEXISTENCE OF EXTERNAL PROTONATION AND SELF-DOPING IN POLYANILINE
    NEOH, KG
    KANG, ET
    TAN, KL
    SYNTHETIC METALS, 1993, 60 (01) : 13 - 21
  • [7] Catalyst solubility and self-doping in ZnS nanostructures
    Bhatti, A.S. (asbhatti@comsats.edu.pk), 1600, American Institute of Physics Inc. (111):
  • [8] Catalyst solubility and self-doping in ZnS nanostructures
    Hafeez, M.
    Manzoor, U.
    Bhatti, A. S.
    Kaynar, M. Burak
    Shah, S. Ismat
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (02)
  • [9] Towards self-doping multimetal porphyrin systems
    Lehmann, Udo
    Goddard, Richard
    Tonner, Ralf
    Reetz, Manfred T.
    JOURNAL OF PORPHYRINS AND PHTHALOCYANINES, 2021, 25 (02) : 162 - 167
  • [10] CATALYST STIMULATES SELF-DOPING IN SILICON NANOWIRES
    不详
    CHEMICAL & ENGINEERING NEWS, 2013, 91 (14) : 37 - 37