Temperature-Driven Self-Doping in Magnetite

被引:9
|
作者
Elnaggar, Hebatalla [1 ,2 ]
Graas, Silvester [1 ]
Lafuerza, Sara [3 ]
Detlefs, Blanka [3 ]
Tabis, Wojciech [4 ,5 ]
Gala, Mateusz A. [4 ]
Ismail, Ahmed [1 ]
van der Eerden, Ad [1 ]
Sikora, Marcin [6 ]
Honig, Jurgen M. [7 ]
Glatzel, P. [3 ]
de Groot, Frank [1 ]
机构
[1] Debye Inst Nanomat Sci, NL-3584 CG Utrecht, Netherlands
[2] Sorbonne Univ, CNRS UMR 7590, Inst Mineral Phys Mat & Cosmochimi, 4 Pl Jussieu, F-75005 Paris, France
[3] European Synchrotron Radiat Facil, 71 Ave Martyrs,CS 40220, F-38043 Grenoble 9, France
[4] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Mickiewicza 30, PL-30059 Krakow, Poland
[5] TU Wien, Inst Solid State Phys, A-1040 Vienna, Austria
[6] AGH Univ Sci & Technol, Acad Ctr Mat & Nanotechnol, Mickiewicza 30, PL-30059 Krakow, Poland
[7] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
基金
欧洲研究理事会;
关键词
X-RAY-ABSORPTION; CATION DIFFUSION; VERWEY TRANSITION; PRE-EDGE; DEFECTS; POINT; CONDUCTION; FE3O4; FE;
D O I
10.1103/PhysRevLett.127.186402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Magnetite is one of the most fascinating materials exhibiting the enigmatic first-order Verwey transition which is conventionally manipulated through chemical doping. Here, we show that heating magnetite results in a spontaneous charge reordering and, consequently, a hole self-doping effect at the octahedral sublattice. Core-level x-ray spectroscopy measurements combined with theory uncovers that there are three regimes of self-doping that map the temperature dependence of the electrical conductivity and magnetism up to the Curie temperature. Our results provide an elegant analogy between the effect of chemical doping and temperature-driven self-doping on trimerons in magnetite.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] Investigation of the Self-Doping Process in HgSe Nanocrystals
    Livache, Clement
    Martinez, Bertille
    Robin, Adrien
    Goubet, Nicolas
    Dubertret, Benoit
    Wang, Hongyue
    Ithurria, Sandrine
    Aubin, Herve
    Lhuillier, Emmanuel
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2018, 215 (03):
  • [12] Managing temperature-driven volume risks
    Cucu, Laura
    Doettling, Rainer
    Heider, Pascal
    Maina, Samuel
    JOURNAL OF ENERGY MARKETS, 2016, 9 (02) : 95 - 110
  • [13] Anomalous metastability in a temperature-driven transition
    Berganza, M. Ibanez
    Coletti, P.
    Petri, A.
    EPL, 2014, 106 (05)
  • [14] Temperature-Driven Gapless Topological Insulator
    Goncalves, Miguel
    Ribeiro, Pedro
    Mondaini, Rubem
    Castro, Eduardo, V
    PHYSICAL REVIEW LETTERS, 2019, 122 (12)
  • [15] Experimental model of temperature-driven nanofluid
    Nnanna, A. G. Agwu
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2007, 129 (06): : 697 - 704
  • [16] Temperature-driven phase transformation in self-assembled diphenylalanine peptide nanotubes
    Heredia, A.
    Bdikin, I.
    Kopyl, S.
    Mishina, E.
    Semin, S.
    Sigov, A.
    German, K.
    Bystrov, V.
    Gracio, J.
    Kholkin, A. L.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (46)
  • [17] TEMPERATURE-DRIVEN MOTION OF A WETTING LAYER
    DURIAN, DJ
    FRANCK, C
    PHYSICAL REVIEW A, 1989, 40 (09): : 5220 - 5223
  • [18] Reversible Self-Assembly of Temperature-Driven Femtosecond Laser Printed Microstructures
    Ni, Caiding
    Lao, Zhaoxin
    Ren, Zhongguo
    Chen, Chao
    Wu, Dong
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2023, 50 (20):
  • [19] Enhanced electronic conductivity by controlled self-doping in pyrochlores
    Xiao, Haiyan
    Zhang, Yanwen
    Weber, William J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (18) : 6556 - 6560
  • [20] SELF-DOPING AND HOPPING CONDUCTIVITY IN AMORPHOUS-CARBON
    LASZLO, I
    KUGLER, S
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1991, 137 : 831 - 834