Cryogenic optical performance of the Cassini Composite InfraRed Spectrometer (CIRS) flight telescope

被引:1
|
作者
Losch, P [1 ]
Lyons, JJ [1 ]
Hagopian, J [1 ]
机构
[1] NASA, Goddard Space Flight Ctr, Opt Branch, Greenbelt, MD 20771 USA
来源
CRYOGENIC OPTICAL SYSTEMS AND INSTRUMENTS VIII | 1998年 / 3435卷
关键词
cryogenic; optical test; encircled energy; beryllium cassegrain telescope;
D O I
10.1117/12.323742
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The Cassini Composite InfraRed Spectrometer (CIRS) half-meter diameter beryllium flight telescope's optical performance was tested at the instrument operating temperature of 170 Kelvin. The telescope components were designed at Goddard Space Flight Center (GSFC) but fabricated out-of-house and then assembled, aligned, and tested upon receipt at GSFC. A 24-inch aperture cryogenic test facility utilizing a 1024 x 1024 CCD array was developed at GSFC specifically for this test. The telescope's image quality (measured as encircled energy), boresight stability and focus stability were measured. The gold coated beryllium design exceeded the cold image performance requirement of 80% encircled energy within a 460 micron diameter circle.
引用
收藏
页码:19 / 29
页数:11
相关论文
共 50 条
  • [21] INFRARED TELESCOPE (IRT) SYSTEM CRYOGENIC PERFORMANCE
    URBAN, EW
    LADNER, DR
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1985, 509 : 216 - 232
  • [22] Flight performance of the infrared telescope in space (IRTS)
    Murakami, H
    Shibai, H
    Onaka, T
    Hirao, T
    INFRARED TECHNOLOGY AND APPLICATIONS XXII, 1996, 2744 : 68 - 74
  • [23] Thermoelectric infrared detectors with improved mechanical stability for the Composite Infrared Spectrometer (CIRS) far infrared focal plane
    Fettig, R
    Lakew, B
    Brasunas, J
    Crooke, J
    Hakun, C
    Orloff, J
    CRYOGENIC OPTICAL SYSTEMS AND INSTRUMENTS VIII, 1998, 3435 : 126 - 135
  • [24] In-flight data obtained with the composite infrared spectrometers on the Cassini mission
    Kunde, V
    Brasunas, J
    Jennings, D
    FOURIER TRANSFORM SPECTROSCOPY, TECHNICAL DIGEST, 2001, 51 : 87 - 90
  • [25] Spitzer space telescope thermal/cryogenic system flight performance
    Finley, Paul T.
    Hopkins, Richard A.
    Schweickart, Russell B.
    ICEC 20: PROCEEDINGS OF THE TWENTIETH INTERNATIONAL CRYOGENIC ENGINEERING CONFERENCE, 2005, : 413 - 418
  • [26] Flight performance of the near-infrared spectrometer
    Noda, M
    Matsumoto, T
    Murakami, H
    Kawada, M
    Tanaka, M
    Matsuura, S
    Guo, HF
    INFRARED SPACEBORNE REMOTE SENSING IV, 1996, 2817 : 248 - 257
  • [27] Simple parametric model for intensity calibration of Cassini composite infrared spectrometer data
    Brasunas, J.
    Mamoutkine, A.
    Gorius, N.
    APPLIED OPTICS, 2016, 55 (17) : 4699 - 4705
  • [28] D/H RATIO OF TITAN FROM OBSERVATIONS OF THE CASSINI/COMPOSITE INFRARED SPECTROMETER
    Abbas, M. M.
    Kandadi, H.
    LeClair, A.
    Achterberg, R. K.
    Flasar, F. M.
    Kunde, V. G.
    Conrath, B. J.
    Bjoraker, G.
    Brasunas, J.
    Carlson, R.
    Jennings, D. E.
    Segura, M.
    ASTROPHYSICAL JOURNAL, 2010, 708 (01): : 342 - 353
  • [29] Cryogenic optical systems for the rapid infrared imager/spectrometer (RIMAS)
    Capone, John I.
    Content, David A.
    Kutyrev, Alexander S.
    Robinson, Frederick D.
    Lotkin, Gennadiy N.
    Toy, Vicki L.
    Veilleux, Sylvain
    Moseley, Samuel H.
    Gehrels, Neil A.
    Vogel, Stuart N.
    GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V, 2014, 9147
  • [30] Saturn's Atmospheric Helium Abundance from Cassini Composite Infrared Spectrometer Data
    Achterberg, Richard K.
    Flasar, F. Michael
    PLANETARY SCIENCE JOURNAL, 2020, 1 (02):