Calibrated rare variant genetic risk scores for complex disease prediction using large exome sequence repositories

被引:23
|
作者
Lali, Ricky [1 ,2 ]
Chong, Michael [1 ,3 ]
Omidi, Arghavan [1 ]
Mohammadi-Shemirani, Pedrum [1 ,4 ]
Le, Ann [1 ,4 ]
Cui, Edward [1 ]
Pare, Guillaume [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Populat Hlth Res Inst, Vasc & Stroke Res Inst, David Braley Cardiac, 237 Barton St East, Hamilton, ON L8L 2X2, Canada
[2] McMaster Univ, Fac Hlth Sci, Dept Hlth Res Methodol Evidence & Impact, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
[3] McMaster Univ, Fac Hlth Sci, Dept Biochem & Biomed Sci, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
[4] McMaster Univ, Fac Hlth Sci, Dept Med Sci, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
[5] Vasc & Stroke Res Inst, Thrombosis & Atherosclerosis Res Inst, David Braley Cardiac, 237 Barton St East, Hamilton, ON L8L 2X2, Canada
[6] McMaster Univ, Michael G DeGroote Sch Med, Dept Pathol & Mol Med, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
[7] McMaster Univ, Dept Clin Epidemiol & Biostat, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
关键词
COMMON DISEASES;
D O I
10.1038/s41467-021-26114-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Rare variants are collectively numerous and may underlie a considerable proportion of complex disease risk. However, identifying genuine rare variant associations is challenging due to small effect sizes, presence of technical artefacts, and heterogeneity in population structure. We hypothesize that rare variant burden over a large number of genes can be combined into a predictive rare variant genetic risk score (RVGRS). We propose a method (RV-EXCALIBER) that leverages summary-level data from a large public exome sequencing database (gnomAD) as controls and robustly calibrates rare variant burden to account for the aforementioned biases. A calibrated RVGRS strongly associates with coronary artery disease (CAD) in European and South Asian populations by capturing the aggregate effect of rare variants through a polygenic model of inheritance. The RVGRS identifies 1.5% of the population with substantial risk of early CAD and confers risk even when adjusting for known Mendelian CAD genes, clinical risk factors, and a common variant genetic risk score. Identifying associations of rare variants with disease is challenging due to small effect sizes, technical artefacts and population structure heterogeneity. Here, the authors present RV-EXCALIBER, a method that uses large summary-level exome data to robustly calibrate rare variant burden.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk
    Zhou, Jian
    Theesfeld, Chandra L.
    Yao, Kevin
    Chen, Kathleen M.
    Wong, Aaron K.
    Troyanskaya, Olga G.
    NATURE GENETICS, 2018, 50 (08) : 1171 - +
  • [42] Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk
    Jian Zhou
    Chandra L. Theesfeld
    Kevin Yao
    Kathleen M. Chen
    Aaron K. Wong
    Olga G. Troyanskaya
    Nature Genetics, 2018, 50 : 1171 - 1179
  • [43] Improving Disease Prediction by Incorporating Family Disease History in Risk Prediction Models with Large-Scale Genetic Data
    Gim, Jungsoo
    Kim, Wonji
    Kwak, Soo Heon
    Choi, Hosik
    Park, Changyi
    Park, Kyong Soo
    Kwon, Sunghoon
    Park, Taesung
    Won, Sungho
    GENETICS, 2017, 207 (03) : 1147 - 1155
  • [44] Identification of skewed X chromosome inactivation using exome and transcriptome sequencing in patients with suspected rare genetic disease
    Fadra, Numrah
    Schultz-Rogers, Laura E.
    Chanana, Pritha
    Cousin, Margot A.
    Macke, Erica L.
    Ferrer, Alejandro
    Pinto e Vairo, Filippo
    Olson, Rory J.
    Oliver, Gavin R.
    Mulvihill, Lindsay A.
    Jenkinson, Garrett
    Klee, Eric W.
    BMC GENOMICS, 2024, 25 (01)
  • [45] Prediction of Coronary Artery Disease Risk Using Genetic and Phenotypic Variables
    Sng, Letitia M. F.
    Sharma, Reevanshi
    Bagot, Sam
    Bauer, Denis C.
    Twine, Natalie A.
    MEDINFO 2023 - THE FUTURE IS ACCESSIBLE, 2024, 310 : 1021 - 1025
  • [46] Risk prediction using common and rare genetic variants: application to Type 2 diabetes
    Bae, Sunghwan
    Park, Taesung
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 1757 - 1760
  • [47] Whole exome sequencing for the diagnosis of rare genetic con-ditions in patients with unexplained liver disease and complex clinical presentation
    Pelusi, S.
    Malvestiti, F.
    Baselli, G.
    Bianco, C.
    Santaniello, C.
    Santoro, L.
    Soardo, G.
    D'Ambrosio, R.
    Barcellini, W.
    Miozzo, M.
    Prati, D.
    Valenti, L.
    DIGESTIVE AND LIVER DISEASE, 2021, 53 : S20 - S20
  • [48] Using genotyping and whole-exome sequencing data to improve genetic risk prediction in deep venous thrombosis
    Lo Faro, Valeria
    Johansson, Therese
    Johansson, Asa
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2023, 31 : 405 - 405
  • [49] Prediction of venous thromboembolism incidence in the general adult population using two published genetic risk scores
    Folsom, Aaron R.
    Tang, Weihong
    Hong, Ching-Ping
    Rosamond, Wayne D.
    Lane, John A.
    Cushman, Mary
    Pankratz, Nathan
    PLOS ONE, 2023, 18 (01):
  • [50] Prediction of coronary heart disease risk using a genetic risk score: The atherosclerosis risk in communities study
    Morrison, Alanna C.
    Bare, Lance A.
    Chambless, Lloyd E.
    Ellis, Stephen G.
    Malloy, Mary
    Kane, John P.
    Pankow, James S.
    Devlin, James J.
    Willerson, James T.
    Boerwinkle, Eric
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2007, 166 (01) : 28 - 35