Calibrated rare variant genetic risk scores for complex disease prediction using large exome sequence repositories

被引:23
|
作者
Lali, Ricky [1 ,2 ]
Chong, Michael [1 ,3 ]
Omidi, Arghavan [1 ]
Mohammadi-Shemirani, Pedrum [1 ,4 ]
Le, Ann [1 ,4 ]
Cui, Edward [1 ]
Pare, Guillaume [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Populat Hlth Res Inst, Vasc & Stroke Res Inst, David Braley Cardiac, 237 Barton St East, Hamilton, ON L8L 2X2, Canada
[2] McMaster Univ, Fac Hlth Sci, Dept Hlth Res Methodol Evidence & Impact, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
[3] McMaster Univ, Fac Hlth Sci, Dept Biochem & Biomed Sci, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
[4] McMaster Univ, Fac Hlth Sci, Dept Med Sci, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
[5] Vasc & Stroke Res Inst, Thrombosis & Atherosclerosis Res Inst, David Braley Cardiac, 237 Barton St East, Hamilton, ON L8L 2X2, Canada
[6] McMaster Univ, Michael G DeGroote Sch Med, Dept Pathol & Mol Med, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
[7] McMaster Univ, Dept Clin Epidemiol & Biostat, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
关键词
COMMON DISEASES;
D O I
10.1038/s41467-021-26114-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Rare variants are collectively numerous and may underlie a considerable proportion of complex disease risk. However, identifying genuine rare variant associations is challenging due to small effect sizes, presence of technical artefacts, and heterogeneity in population structure. We hypothesize that rare variant burden over a large number of genes can be combined into a predictive rare variant genetic risk score (RVGRS). We propose a method (RV-EXCALIBER) that leverages summary-level data from a large public exome sequencing database (gnomAD) as controls and robustly calibrates rare variant burden to account for the aforementioned biases. A calibrated RVGRS strongly associates with coronary artery disease (CAD) in European and South Asian populations by capturing the aggregate effect of rare variants through a polygenic model of inheritance. The RVGRS identifies 1.5% of the population with substantial risk of early CAD and confers risk even when adjusting for known Mendelian CAD genes, clinical risk factors, and a common variant genetic risk score. Identifying associations of rare variants with disease is challenging due to small effect sizes, technical artefacts and population structure heterogeneity. Here, the authors present RV-EXCALIBER, a method that uses large summary-level exome data to robustly calibrate rare variant burden.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Contextualizing genetic risk score for disease screening and rare variant discovery
    Dan Zhou
    Dongmei Yu
    Jeremiah M. Scharf
    Carol A. Mathews
    Lauren McGrath
    Edwin Cook
    S. Hong Lee
    Lea K. Davis
    Eric R. Gamazon
    Nature Communications, 12
  • [22] SEQSpark: A Complete Analysis Tool for Large-Scale Rare Variant Association Studies Using Whole-Genome and Exome Sequence Data
    Zhang, Di
    Zhao, Linhai
    Li, Biao
    He, Zongxiao
    Wang, Gao T.
    Liu, Dajiang J.
    Leal, Suzanne M.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2017, 101 (01) : 115 - 122
  • [23] Rare and Coding Region Genetic Variants Associated With Risk of Ischemic Stroke The NHLBI Exome Sequence Project
    Auer, Paul L.
    Nalls, Mike
    Meschia, James F.
    Worrall, Bradford B.
    Longstreth, W. T., Jr.
    Seshadri, Sudha
    Kooperberg, Charles
    Burger, Kathleen M.
    Carlson, Christopher S.
    Carty, Cara L.
    Chen, Wei-Min
    Cupples, L. Adrienne
    DeStefano, Anita L.
    Fornage, Myriam
    Hardy, John
    Hsu, Li
    Jackson, Rebecca D.
    Jarvik, Gail P.
    Kim, Daniel S.
    Lakshminarayan, Kamakshi
    Lange, Leslie A.
    Manichaikul, Ani
    Quinlan, Aaron R.
    Singleton, Andrew B.
    Thornton, Timothy A.
    Nickerson, Deborah A.
    Peters, Ulrike
    Rich, Stephen S.
    JAMA NEUROLOGY, 2015, 72 (07) : 781 - 788
  • [24] Genetic risk scores used in cardiovascular disease prediction models: a systematic review
    Yun, Hyunok
    Noh, Nan Iee
    Lee, Eun Young
    REVIEWS IN CARDIOVASCULAR MEDICINE, 2022, 23 (01)
  • [25] Prediction of coronary artery disease: Do risk factor genetic risk scores add value?
    Ramirez, Julia
    van Duijvenboden, Stefan
    Young, William J.
    Tinker, Andrew
    Lambiase, Pier D.
    Orini, Michele
    Munroe, Patricia B.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2022, 30 (SUPPL 1) : 188 - 189
  • [26] Genetic risk scores for risk and therapy response prediction in Slovenian Crohn's disease patients
    Zupancic, K.
    Skok, K.
    Repnik, K.
    Skok, P.
    Potocnik, U.
    JOURNAL OF CROHNS & COLITIS, 2016, 10 : S480 - S480
  • [27] PREDICTION OF CORONARY ARTERY DISEASE AND MAJOR ADVERSE CARDIOVASCULAR EVENTS USING CLINICAL AND GENETIC RISK SCORES FOR CARDIOVASCULAR RISK FACTORS
    Ramirez, J.
    Van Duijvenboden, S.
    Young, W.
    Tinker, A.
    Lambiase, P.
    Orini, M.
    Munroe, P.
    ATHEROSCLEROSIS, 2022, 355 : E3 - E3
  • [28] Prediction of Coronary Artery Disease and Major Adverse Cardiovascular Events Using Clinical and Genetic Risk Scores for Cardiovascular Risk Factors
    Ramirez, Julia
    van Duijvenboden, Stefan
    Young, William J.
    Tinker, Andrew
    Lambiase, Pier D.
    Orini, Michele
    Munroe, Patricia B.
    CIRCULATION-GENOMIC AND PRECISION MEDICINE, 2022, 15 (05): : 444 - 452
  • [29] A colorectal cancer prediction model using traditional and genetic risk scores in Koreans
    Keum Ji Jung
    Daeyoun Won
    Christina Jeon
    Soriul Kim
    Tae Il Kim
    Sun Ha Jee
    Terri H Beaty
    BMC Genetics, 16
  • [30] A colorectal cancer prediction model using traditional and genetic risk scores in Koreans
    Jung, Keum Ji
    Won, Daeyoun
    Jeon, Christina
    Kim, Soriul
    Kim, Tae Il
    Jee, Sun Ha
    Beaty, Terri H.
    BMC GENETICS, 2015, 16