Multiplicities of jumping points for mixed multiplier ideals

被引:3
|
作者
Alberich-Carraminana, Maria [1 ,2 ]
Alvarez Montaner, Josep [3 ]
Dachs-Cadefau, Ferran [4 ]
Gonzalez-Alonso, Victor [5 ]
机构
[1] Univ Politecn Cataluna, Barcelona Tech, CSIC, Dept Matemat,IRI, Ave Diagonal 647, E-08028 Barcelona, Spain
[2] Univ Politecn Cataluna, Barcelona Tech, CSIC, Inst Robot & Informat Ind,IRI, Ave Diagonal 647, E-08028 Barcelona, Spain
[3] Univ Politecn Cataluna, Barcelona Tech, Dept Matemat, Ave Diagonal 647, E-08028 Barcelona, Spain
[4] Martin Luther Univ Halle Wittenberg, Inst Math, Theodor Lieser Str 5, D-06099 Saale, Sachsen Anhalt, Germany
[5] Leibniz Univ Hannover, Inst Algebra Geometrie, Welfengarten 1, D-30161 Hannover, Niedersachsen, Germany
来源
REVISTA MATEMATICA COMPLUTENSE | 2020年 / 33卷 / 01期
关键词
Mixed multiplier ideals; Multiplicity; Poincare series; Jumping points; 2-DIMENSIONAL LOCAL-RINGS; HODGE THEORETICAL INVARIANTS; LOG-CANONICAL THRESHOLD; POINCARE-SERIES; GERMS; CURVES;
D O I
10.1007/s13163-019-00309-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we make a systematic study of the multiplicity of the jumping points associated to the mixed multiplier ideals of a family of ideals in a complex surface with rational singularities. In particular we study the behaviour of the multiplicity by small perturbations of the jumping points. We also introduce a Poincare series for mixed multiplier ideals and prove its rationality. Finally, we study the set of divisors that contribute to the log-canonical wall.
引用
收藏
页码:325 / 348
页数:24
相关论文
共 50 条
  • [21] The multiplier ideals of a sum of ideals
    Mustata, M
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (01) : 205 - 217
  • [22] Multiplier ideals of monomial ideals
    Howald, JA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (07) : 2665 - 2671
  • [23] Convex bodies and multiplicities of ideals
    Kiumars Kaveh
    Askold Khovanskii
    Proceedings of the Steklov Institute of Mathematics, 2014, 286 : 268 - 284
  • [24] Generalized multiplicities of edge ideals
    Ali Alilooee
    Ivan Soprunov
    Javid Validashti
    Journal of Algebraic Combinatorics, 2018, 47 : 441 - 472
  • [25] Monomial ideals and the computation of multiplicities
    Delfino, D
    Taylor, A
    Vasconcelos, WV
    Weininger, N
    Villarreal, RH
    COMMUTATIVE RING THEORY AND APPLICATIONS, 2003, 231 : 87 - 106
  • [26] On multiplicities of graded sequences of ideals
    Mustata, M
    JOURNAL OF ALGEBRA, 2002, 256 (01) : 229 - 249
  • [27] Generalized multiplicities of edge ideals
    Alilooee, Ali
    Soprunov, Ivan
    Validashti, Javid
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2018, 47 (03) : 441 - 472
  • [28] Convex Bodies and Multiplicities of Ideals
    Kaveh, Kiumars
    Khovanskii, Askold
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 286 (01) : 268 - 284
  • [29] A note on the multiplier ideals of monomial ideals
    Cheng Gong
    Zhongming Tang
    Czechoslovak Mathematical Journal, 2015, 65 : 905 - 913
  • [30] A note on the multiplier ideals of monomial ideals
    Gong, Cheng
    Tang, Zhongming
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (04) : 905 - 913