Convex Bodies and Multiplicities of Ideals

被引:21
|
作者
Kaveh, Kiumars [1 ]
Khovanskii, Askold [2 ,3 ,4 ]
机构
[1] Univ Pittsburgh, Sch Arts & Sci, Dept Math, Pittsburgh, PA 15260 USA
[2] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[3] Independent Univ Moscow, Moscow 119002, Russia
[4] Russian Acad Sci, Inst Syst Anal, Moscow 117312, Russia
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
LOCAL-RINGS;
D O I
10.1134/S0081543814060169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We associate convex regions in R-n to m-primary graded sequences of subspaces, in particular m-primary graded sequences of ideals, in a large class of local algebras (including analytically irreducible local domains). These convex regions encode information about Samuel multiplicities. This is in the spirit of the theory of Grobner bases and Newton polyhedra on the one hand, and the theory of Newton-Okounkov bodies for linear systems on the other hand. We use this to give a new proof as well as a generalization of a Brunn-Minkowski inequality for multiplicities due to Teissier and Rees-Sharp.
引用
收藏
页码:268 / 284
页数:17
相关论文
共 50 条
  • [1] Convex bodies and multiplicities of ideals
    Kiumars Kaveh
    Askold Khovanskii
    Proceedings of the Steklov Institute of Mathematics, 2014, 286 : 268 - 284
  • [2] Convex bodies and graded families of monomial ideals
    Cid-Ruiz, Yairon
    Montano, Jonathan
    REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (06) : 2033 - 2056
  • [3] Convex bodies and asymptotic invariants for powers of monomial ideals
    Camarneiro, Joao
    Drabkin, Ben
    Fragoso, Duarte
    Frendreiss, William
    Hoffman, Daniel
    Seceleanu, Alexandra
    Tang, Tingting
    Yang, Sewon
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (10)
  • [4] GENERATORS OF IDEALS AND MULTIPLICITIES
    VALLA, G
    COMMUNICATIONS IN ALGEBRA, 1981, 9 (15) : 1541 - 1549
  • [5] Multiplicities of monomial ideals
    Herzog, J
    Srinivasan, H
    JOURNAL OF ALGEBRA, 2004, 274 (01) : 230 - 244
  • [6] LENGTH OF IDEALS AND MULTIPLICITIES
    DASSOW, J
    NESSELMANN, D
    MATHEMATISCHE NACHRICHTEN, 1975, 67 : 247 - 250
  • [7] Reductions and mixed multiplicities of ideals
    Viêt, DQ
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (11) : 4159 - 4178
  • [8] Generalized multiplicities of edge ideals
    Ali Alilooee
    Ivan Soprunov
    Javid Validashti
    Journal of Algebraic Combinatorics, 2018, 47 : 441 - 472
  • [9] Monomial ideals and the computation of multiplicities
    Delfino, D
    Taylor, A
    Vasconcelos, WV
    Weininger, N
    Villarreal, RH
    COMMUTATIVE RING THEORY AND APPLICATIONS, 2003, 231 : 87 - 106
  • [10] On multiplicities of graded sequences of ideals
    Mustata, M
    JOURNAL OF ALGEBRA, 2002, 256 (01) : 229 - 249