MONOTONICITY AND CONVEXITY FOR NABLA FRACTIONAL q-DIFFERENCES

被引:0
|
作者
Jia Baoguo [1 ]
Erbe, Lynn [2 ]
Peterson, Allan [2 ]
机构
[1] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[2] Univ Nebraska Lincoln, Dept Math, Lincoln, NE 68588 USA
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2016年 / 25卷 / 1-2期
基金
中国国家自然科学基金;
关键词
Q-DERIVATIVES; Q-INTEGRALS; CALCULUS; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we examine the relation between monotonicity and convexity for nabla fractional q-differences. In particular we prove that Theorem A. Assume f : q(N0) -> R, del(v)(q)f(t) >= 0 for each t is an element of q(N0), with 1 < v < 2, then del(q)f(t) >= 0 for t is an element of q(N1). Theorem B. Assume f : q(N0) -> R, del(v)(q)f(t) >= 0 for each t is an element of q(N1), with 2 < v < 3, then del(2)(q)f(t) >= 0 for t is an element of q(N2). This shows that, in some sense, the positivity of the with order q-fractional difference has a strong connection to the monotonicity and convexity of f(t).
引用
收藏
页码:47 / 60
页数:14
相关论文
共 50 条
  • [31] Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel
    Abdeljawad, Thabet
    Baleanu, Dumitru
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 106 - 110
  • [32] A MONOTONICITY RESULT FOR THE q-FRACTIONAL OPERATOR
    Abdalla, Bahaaeldin
    Abdeljawad, T.
    Nieto, Juan J.
    JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 7 (04): : 83 - 92
  • [33] MONOTONICITY AND CONVEXITY RESULTS FOR A FUNCTION THROUGH ITS CAPUTO FRACTIONAL DERIVATIVE
    Al-Refai, Mohammed
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (03) : 818 - 824
  • [34] Monotonicity and Convexity Results for a Function Through Its Caputo Fractional Derivative
    Mohammed Al-Refai
    Fractional Calculus and Applied Analysis, 2017, 20 : 818 - 824
  • [35] Inner products involving q-differences:: the little q-Laguerre-Sobolev polynomials
    Area, I
    Godoy, E
    Marcellán, F
    Moreno-Balcázar, JJ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) : 1 - 22
  • [36] A Study of Monotonicity Analysis for the Delta and Nabla Discrete Fractional Operators of the Liouville-Caputo Family
    Mohammed, Pshtiwan Othman
    Goodrich, Christopher S. S.
    Srivastava, Hari Mohan
    Al-Sarairah, Eman
    Hamed, Y. S.
    AXIOMS, 2023, 12 (02)
  • [37] MONOTONICITY RESULTS FOR DELTA FRACTIONAL DIFFERENCES REVISITED
    Erbe, Lynn
    Goodrich, Christopher S.
    Jia, Baoguo
    Peterson, Allan
    MATHEMATICA SLOVACA, 2017, 67 (04) : 895 - 906
  • [38] Value distribution of q-differences of meromorphic functions in several complex variables
    Cao, T. -B.
    Korhonen, R. J.
    ANALYSIS MATHEMATICA, 2020, 46 (04) : 699 - 736
  • [39] Nabla discrete fractional calculus and nabla inequalities
    Anastassiou, George A.
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 51 (5-6) : 562 - 571
  • [40] Stability analysis for a class of nabla (q, h)-fractional difference equations
    Liu, Xiang
    Jia, Baoguo
    Erbe, Lynn
    Peterson, Allan
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (02) : 664 - 687