MONOTONICITY AND CONVEXITY FOR NABLA FRACTIONAL q-DIFFERENCES

被引:0
|
作者
Jia Baoguo [1 ]
Erbe, Lynn [2 ]
Peterson, Allan [2 ]
机构
[1] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[2] Univ Nebraska Lincoln, Dept Math, Lincoln, NE 68588 USA
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2016年 / 25卷 / 1-2期
基金
中国国家自然科学基金;
关键词
Q-DERIVATIVES; Q-INTEGRALS; CALCULUS; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we examine the relation between monotonicity and convexity for nabla fractional q-differences. In particular we prove that Theorem A. Assume f : q(N0) -> R, del(v)(q)f(t) >= 0 for each t is an element of q(N0), with 1 < v < 2, then del(q)f(t) >= 0 for t is an element of q(N1). Theorem B. Assume f : q(N0) -> R, del(v)(q)f(t) >= 0 for each t is an element of q(N1), with 2 < v < 3, then del(2)(q)f(t) >= 0 for t is an element of q(N2). This shows that, in some sense, the positivity of the with order q-fractional difference has a strong connection to the monotonicity and convexity of f(t).
引用
收藏
页码:47 / 60
页数:14
相关论文
共 50 条