MONOTONICITY AND CONVEXITY FOR NABLA FRACTIONAL q-DIFFERENCES

被引:0
|
作者
Jia Baoguo [1 ]
Erbe, Lynn [2 ]
Peterson, Allan [2 ]
机构
[1] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[2] Univ Nebraska Lincoln, Dept Math, Lincoln, NE 68588 USA
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2016年 / 25卷 / 1-2期
基金
中国国家自然科学基金;
关键词
Q-DERIVATIVES; Q-INTEGRALS; CALCULUS; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we examine the relation between monotonicity and convexity for nabla fractional q-differences. In particular we prove that Theorem A. Assume f : q(N0) -> R, del(v)(q)f(t) >= 0 for each t is an element of q(N0), with 1 < v < 2, then del(q)f(t) >= 0 for t is an element of q(N1). Theorem B. Assume f : q(N0) -> R, del(v)(q)f(t) >= 0 for each t is an element of q(N1), with 2 < v < 3, then del(2)(q)f(t) >= 0 for t is an element of q(N2). This shows that, in some sense, the positivity of the with order q-fractional difference has a strong connection to the monotonicity and convexity of f(t).
引用
收藏
页码:47 / 60
页数:14
相关论文
共 50 条
  • [1] Monotonicity and convexity for nabla fractional (q, h)-differences
    Du, Feifei
    Jia, Baoguo
    Erbe, Lynn
    Peterson, Allan
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2016, 22 (09) : 1224 - 1243
  • [2] Convexity for nabla and delta fractional differences
    Jia Baoguo
    Erbe, Lynn
    Peterson, Allan
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2015, 21 (04) : 360 - 373
  • [3] Sharp monotonicity results for fractional nabla sequential differences
    Goodrich, Christopher S.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2019, 25 (06) : 801 - 814
  • [4] Two monotonicity results for nabla and delta fractional differences
    Jia, Baoguo
    Erbe, Lynn
    Peterson, Allan
    ARCHIV DER MATHEMATIK, 2015, 104 (06) : 589 - 597
  • [5] Two monotonicity results for nabla and delta fractional differences
    Baoguo Jia
    Lynn Erbe
    Allan Peterson
    Archiv der Mathematik, 2015, 104 : 589 - 597
  • [6] Mixed order monotonicity results for sequential fractional nabla differences
    Dahal, Rajendra
    Goodrich, Christopher S.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2019, 25 (06) : 837 - 854
  • [7] Monotonicity Results for Nabla Riemann-Liouville Fractional Differences
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Balea, Itru
    Jan, Rashid
    Abualnaja, Khadijah M.
    MATHEMATICS, 2022, 10 (14)
  • [8] Monotonicity results for CFC nabla fractional differences with negative lower bound
    Goodrich, Christopher S. S.
    Jonnalagadda, Jagan M. M.
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2021, 41 (04): : 221 - 229
  • [9] Convexity, monotonicity, and positivity results for sequential fractional nabla difference operators with discrete exponential kernels
    Goodrich, Christopher S.
    Jonnalagadda, Jagan M.
    Lyons, Benjamin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (08) : 7099 - 7120
  • [10] Positive Solutions for Singular Boundary Value Problem with Fractional q-Differences
    Liang, Sihua
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2015, 38 (02) : 647 - 666