A statistical framework for modeling gene expression using chromatin features and application to modENCODE datasets

被引:107
|
作者
Cheng, Chao [1 ]
Yan, Koon-Kiu [1 ]
Yip, Kevin Y. [1 ,2 ]
Rozowsky, Joel [1 ]
Alexander, Roger [1 ]
Shou, Chong [1 ]
Gerstein, Mark [1 ,3 ,4 ]
机构
[1] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[2] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Hong Kong, Peoples R China
[3] Yale Univ, Program Computat Biol & Bioinformat, New Haven, CT 06520 USA
[4] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
来源
GENOME BIOLOGY | 2011年 / 12卷 / 02期
关键词
GENOME-WIDE MAPS; HISTONE MODIFICATIONS; TRANSCRIPTION ELONGATION; CAENORHABDITIS-ELEGANS; STERILE-20; KINASE; X-CHROMOSOME; CODE; DNA; ACETYLATION; PROMOTERS;
D O I
10.1186/gb-2011-12-2-r15
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We develop a statistical framework to study the relationship between chromatin features and gene expression. This can be used to predict gene expression of protein coding genes, as well as microRNAs. We demonstrate the prediction in a variety of contexts, focusing particularly on the modENCODE worm datasets. Moreover, our framework reveals the positional contribution around genes (upstream or downstream) of distinct chromatin features to the overall prediction of expression levels.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Stochastic modeling of gene expression: application of ensembles of trajectories
    Torkaman, Pegah
    Jafarpour, Farhad H.
    PHYSICAL BIOLOGY, 2019, 16 (06)
  • [33] Modeling paraphrase identification using supervised learning methods against various datasets and features
    Mahajan, Rutal S.
    Zaveri, Mukesh A.
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (ICCIC), 2017, : 926 - 929
  • [34] A Framework for Network-Based Epidemiological Modeling of Tuberculosis Dynamics Using Synthetic Datasets
    Renardy, Marissa
    Kirschner, Denise E.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2020, 82 (06)
  • [35] A Framework for Network-Based Epidemiological Modeling of Tuberculosis Dynamics Using Synthetic Datasets
    Marissa Renardy
    Denise E. Kirschner
    Bulletin of Mathematical Biology, 2020, 82
  • [36] Unifying framework for rule semantics: Application to gene expression data
    Agier, Marie
    Petit, Jean-Marc
    Suzuki, Einoshin
    FUNDAMENTA INFORMATICAE, 2007, 78 (04) : 543 - 559
  • [37] SpatialSPM: statistical parametric mapping for the comparison of gene expression pattern images in multiple spatial transcriptomic datasets
    Ohn, Jungyoon
    Seo, Mi-Kyoung
    Park, Jeongbin
    Lee, Daeseung
    Choi, Hongyoon
    NUCLEIC ACIDS RESEARCH, 2024, 52 (11)
  • [38] A statistical framework for the design of microarray experiments and effective detection of differential gene expression
    Zhang, SD
    Gant, TW
    BIOINFORMATICS, 2004, 20 (16) : 2821 - 2828
  • [39] Sparse Modeling of Mandibular Reconstruction Procedures Using Statistical Geometric Features
    Nakao, Megumi
    Matsuda, Tetsuya
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 3248 - 3251
  • [40] Hydra: A mixture modeling framework for subtyping pediatric cancer cohorts using multimodal gene expression signatures
    Pfeil, Jacob
    Sanders, Lauren M.
    Anastopoulos, Ioannis
    Lyle, A. Geoffrey
    Weinstein, Alana S.
    Xue, Yuanqing
    Blair, Andrew
    Beale, Holly C.
    Lee, Alex
    Leung, Stanley G.
    Dinh, Phuong T.
    Shah, Avanthi Tayi
    Breese, Marcus R.
    Devine, W. Patrick
    Bjork, Isabel
    Salama, Sofie R.
    Sweet-Cordero, E. Alejandro
    Haussler, David
    Vaske, Olena Morozova
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (04)