A statistical framework for modeling gene expression using chromatin features and application to modENCODE datasets

被引:107
|
作者
Cheng, Chao [1 ]
Yan, Koon-Kiu [1 ]
Yip, Kevin Y. [1 ,2 ]
Rozowsky, Joel [1 ]
Alexander, Roger [1 ]
Shou, Chong [1 ]
Gerstein, Mark [1 ,3 ,4 ]
机构
[1] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[2] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Hong Kong, Peoples R China
[3] Yale Univ, Program Computat Biol & Bioinformat, New Haven, CT 06520 USA
[4] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
来源
GENOME BIOLOGY | 2011年 / 12卷 / 02期
关键词
GENOME-WIDE MAPS; HISTONE MODIFICATIONS; TRANSCRIPTION ELONGATION; CAENORHABDITIS-ELEGANS; STERILE-20; KINASE; X-CHROMOSOME; CODE; DNA; ACETYLATION; PROMOTERS;
D O I
10.1186/gb-2011-12-2-r15
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We develop a statistical framework to study the relationship between chromatin features and gene expression. This can be used to predict gene expression of protein coding genes, as well as microRNAs. We demonstrate the prediction in a variety of contexts, focusing particularly on the modENCODE worm datasets. Moreover, our framework reveals the positional contribution around genes (upstream or downstream) of distinct chromatin features to the overall prediction of expression levels.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] CorSig: A General Framework for Estimating Statistical Significance of Correlation and Its Application to Gene Co-Expression Analysis
    Wang, Hong-Qiang
    Tsai, Chung-Jui
    PLOS ONE, 2013, 8 (10):
  • [22] A machine learning framework for the prediction of chromatin folding in Drosophila using epigenetic features
    Rozenwald M.B.
    Galitsyna A.A.
    Sapunov G.V.
    Khrameeva E.E.
    Gelfand M.S.
    PeerJ Computer Science, 2020, 6 : 2 - 21
  • [23] A machine learning framework for the prediction of chromatin folding in Drosophila using epigenetic features
    Rozenwald, Michal B.
    Galitsyna, Aleksandra A.
    Sapunov, Grigory, V
    Khrameeva, Ekaterina E.
    Gelfand, Mikhail S.
    PEERJ COMPUTER SCIENCE, 2020,
  • [24] Using oocyte nuclei for studies on chromatin structure and gene expression
    Sommerville, John
    METHODS, 2010, 51 (01) : 157 - 164
  • [25] Using genomics to study how chromatin influences gene expression
    Higgs, Douglas R.
    Vernimmen, Douglas
    Hughes, Jim
    Gibbons, Richard
    ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, 2007, 8 : 299 - 325
  • [26] Learning Misclassification Costs for Imbalanced Datasets, Application in Gene Expression Data Classification
    Lu, Huijuan
    Xu, Yige
    Ye, Minchao
    Yan, Ke
    Jin, Qun
    Gao, Zhigang
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, PT I, 2018, 10954 : 513 - 519
  • [27] shinyGEO: a web-based application for analyzing gene expression omnibus datasets
    Dumas, Jasmine
    Gargano, Michael A.
    Dancik, Garrett M.
    BIOINFORMATICS, 2016, 32 (23) : 3679 - 3681
  • [28] Appliance of effective clustering technique for gene expression datasets using GPU
    Saveetha, V.
    Sophia, S.
    Vijayakumar, P. D. R.
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 5): : 12381 - 12388
  • [29] Appliance of effective clustering technique for gene expression datasets using GPU
    V. Saveetha
    S. Sophia
    P. D. R. Vijayakumar
    Cluster Computing, 2019, 22 : 12381 - 12388
  • [30] Statistical methods for gene expression studies using serial analysis of gene expression (SAGE).
    Forrest, WF
    Peters, DG
    Feingold, E
    AMERICAN JOURNAL OF HUMAN GENETICS, 2000, 67 (04) : 255 - 255