A statistical framework for modeling gene expression using chromatin features and application to modENCODE datasets

被引:107
|
作者
Cheng, Chao [1 ]
Yan, Koon-Kiu [1 ]
Yip, Kevin Y. [1 ,2 ]
Rozowsky, Joel [1 ]
Alexander, Roger [1 ]
Shou, Chong [1 ]
Gerstein, Mark [1 ,3 ,4 ]
机构
[1] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[2] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Hong Kong, Peoples R China
[3] Yale Univ, Program Computat Biol & Bioinformat, New Haven, CT 06520 USA
[4] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
来源
GENOME BIOLOGY | 2011年 / 12卷 / 02期
关键词
GENOME-WIDE MAPS; HISTONE MODIFICATIONS; TRANSCRIPTION ELONGATION; CAENORHABDITIS-ELEGANS; STERILE-20; KINASE; X-CHROMOSOME; CODE; DNA; ACETYLATION; PROMOTERS;
D O I
10.1186/gb-2011-12-2-r15
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We develop a statistical framework to study the relationship between chromatin features and gene expression. This can be used to predict gene expression of protein coding genes, as well as microRNAs. We demonstrate the prediction in a variety of contexts, focusing particularly on the modENCODE worm datasets. Moreover, our framework reveals the positional contribution around genes (upstream or downstream) of distinct chromatin features to the overall prediction of expression levels.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A statistical framework for modeling gene expression using chromatin features and application to modENCODE datasets
    Chao Cheng
    Koon-Kiu Yan
    Kevin Y Yip
    Joel Rozowsky
    Roger Alexander
    Chong Shou
    Mark Gerstein
    Genome Biology, 12
  • [2] Modeling gene expression using chromatin features in various cellular contexts
    Xianjun Dong
    Melissa C Greven
    Anshul Kundaje
    Sarah Djebali
    James B Brown
    Chao Cheng
    Thomas R Gingeras
    Mark Gerstein
    Roderic Guigó
    Ewan Birney
    Zhiping Weng
    Genome Biology, 13
  • [3] Modeling gene expression using chromatin features in various cellular contexts
    Dong, Xianjun
    Greven, Melissa C.
    Kundaje, Anshul
    Djebali, Sarah
    Brown, James B.
    Cheng, Chao
    Gingeras, Thomas R.
    Gerstein, Mark
    Guigo, Roderic
    Birney, Ewan
    Weng, Zhiping
    GENOME BIOLOGY, 2012, 13 (09):
  • [4] A Statistical Modeling Framework for Characterising Uncertainty in Large Datasets: Application to Ocean Colour
    Land, Peter E.
    Bailey, Trevor C.
    Taberner, Malcolm
    Pardo, Silvia
    Sathyendranath, Shubha
    Zenouz, Kayvan Nejabati
    Brammall, Vicki
    Shutler, Jamie D.
    Quartly, Graham D.
    REMOTE SENSING, 2018, 10 (05)
  • [5] Identifying chromatin features that regulate gene expression distribution
    Thanutra Zhang
    Robert Foreman
    Roy Wollman
    Scientific Reports, 10
  • [6] Identifying chromatin features that regulate gene expression distribution
    Zhang, Thanutra
    Foreman, Robert
    Wollman, Roy
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [7] Modeling massive spatial datasets using a conjugate Bayesian linear modeling framework
    Banerjee, Sudipto
    SPATIAL STATISTICS, 2020, 37
  • [8] Tight clustering for large datasets with an application to gene expression data
    Bikram Karmakar
    Sarmistha Das
    Sohom Bhattacharya
    Rohan Sarkar
    Indranil Mukhopadhyay
    Scientific Reports, 9
  • [9] Tight clustering for large datasets with an application to gene expression data
    Karmakar, Bikram
    Das, Sarmistha
    Bhattacharya, Sohom
    Sarkar, Rohan
    Mukhopadhyay, Indranil
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [10] Deduction of a gene regulatory relationship framework from gene expression data by the application of graphical Gaussian modeling
    Aburatani, S
    Kuhara, S
    Toh, H
    Horimoto, K
    SIGNAL PROCESSING, 2003, 83 (04) : 777 - 788