Stability on Matchings in 3-Uniform Hypergraphs

被引:0
|
作者
Guo, Mingyang [1 ]
Lu, Hongliang [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypergraphs; Matchings; Stability; INTERSECTION-THEOREMS; PERFECT MATCHINGS; SYSTEMS;
D O I
10.1007/s00373-022-02483-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a positive integer r, let [r] {1, ..., r} . Let n, m be positive integers such that n is sufficiently large and 1 <= m <= left perpendicular n/3 right perpendicular - 1. Let H be a 3-graph with vertex set [n], and let delta(1) (H) denote the minimum vertex degree of H. The size of a maximum matching of H is denoted by v(H). Kuhn, Osthus and Treglown (2013) proved that there exists an integer n(0) is an element of N such that if H is a 3-graph with n >= n(0) vertices and delta(1) (H) > (n-m(2)) - (n-m(2)), then v(H) >= m. In this paper, we show that there exists an integer n(1) is an element of N such that if vertical bar V(H)vertical bar >= n(1), delta(1) (H) > (n-1(2)) - (n-m(2)) + 3 and v(H) <= m, then H is a subgraph of H* (n, m), where H* (n, m) is a 3-graph with vertex set [n] and edge set E(H*(n,m)) = {e subset of [n] : vertical bar e vertical bar = 3 and e boolean AND [m] not equal empty set}. The minimum degree condition is best possible.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Edge-coloring of 3-uniform hypergraphs
    Obszarski, Pawel
    Jastrzebski, Andrzej
    DISCRETE APPLIED MATHEMATICS, 2017, 217 : 48 - 52
  • [42] On Generalized Ramsey Numbers for 3-Uniform Hypergraphs
    Dudek, Andrzej
    Mubayi, Dhruv
    JOURNAL OF GRAPH THEORY, 2014, 76 (03) : 217 - 223
  • [43] HAMILTON DECOMPOSITIONS OF COMPLETE 3-UNIFORM HYPERGRAPHS
    VERRALL, H
    DISCRETE MATHEMATICS, 1994, 132 (1-3) : 333 - 348
  • [44] Line graphs of linear 3-uniform hypergraphs
    Metelsky, YM
    Tyshkevich, RI
    DOKLADY AKADEMII NAUK BELARUSI, 1996, 40 (03): : 26 - 30
  • [45] Decomposing Complete 3-Uniform Hypergraphs into Cycles
    Guanru LI
    Yiming LEI
    Yuansheng YANG
    Jirimutu
    Journal of Mathematical Research with Applications, 2016, 36 (01) : 9 - 14
  • [46] On the rainbow matching conjecture for 3-uniform hypergraphs
    Jun Gao
    Hongliang Lu
    Jie Ma
    Xingxing Yu
    Science China Mathematics, 2022, 65 : 2423 - 2440
  • [47] On the rainbow matching conjecture for 3-uniform hypergraphs
    Jun Gao
    Hongliang Lu
    Jie Ma
    Xingxing Yu
    Science China(Mathematics), 2022, 65 (11) : 2423 - 2440
  • [48] Squares of Hamiltonian cycles in 3-uniform hypergraphs
    Bedenknecht, Wiebke
    Reiher, Christian
    RANDOM STRUCTURES & ALGORITHMS, 2020, 56 (02) : 339 - 372
  • [49] Mixed covering arrays on 3-uniform hypergraphs
    Akhtar, Yasmeen
    Maity, Soumen
    DISCRETE APPLIED MATHEMATICS, 2017, 232 : 8 - 22
  • [50] CODEGREE THRESHOLDS FOR COVERING 3-UNIFORM HYPERGRAPHS
    Falgas-Ravry, Victor
    Zhao, Yi
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (04) : 1899 - 1917