Stability on Matchings in 3-Uniform Hypergraphs

被引:0
|
作者
Guo, Mingyang [1 ]
Lu, Hongliang [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypergraphs; Matchings; Stability; INTERSECTION-THEOREMS; PERFECT MATCHINGS; SYSTEMS;
D O I
10.1007/s00373-022-02483-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a positive integer r, let [r] {1, ..., r} . Let n, m be positive integers such that n is sufficiently large and 1 <= m <= left perpendicular n/3 right perpendicular - 1. Let H be a 3-graph with vertex set [n], and let delta(1) (H) denote the minimum vertex degree of H. The size of a maximum matching of H is denoted by v(H). Kuhn, Osthus and Treglown (2013) proved that there exists an integer n(0) is an element of N such that if H is a 3-graph with n >= n(0) vertices and delta(1) (H) > (n-m(2)) - (n-m(2)), then v(H) >= m. In this paper, we show that there exists an integer n(1) is an element of N such that if vertical bar V(H)vertical bar >= n(1), delta(1) (H) > (n-1(2)) - (n-m(2)) + 3 and v(H) <= m, then H is a subgraph of H* (n, m), where H* (n, m) is a 3-graph with vertex set [n] and edge set E(H*(n,m)) = {e subset of [n] : vertical bar e vertical bar = 3 and e boolean AND [m] not equal empty set}. The minimum degree condition is best possible.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Judicious partitions of 3-uniform hypergraphs
    Bollobás, B
    Scott, AD
    EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (03) : 289 - 300
  • [32] Packing cliques in 3-uniform hypergraphs
    Javadi, Ramin
    Poorhadi, Ehsan
    Fallah, Farshad
    JOURNAL OF COMBINATORIAL DESIGNS, 2020, 28 (08) : 580 - 603
  • [33] 3-UNIFORM HYPERGRAPHS AND LINEAR CYCLES
    Ergemlidze, Beka
    Gyori, Ervin
    Methuku, Abhishek
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (02) : 933 - 950
  • [34] Decompositions of the 3-uniform hypergraphs Kv(3) into hypergraphs of a certain type
    Tao Feng
    Yan-xun Chang
    Science in China Series A: Mathematics, 2007, 50 : 1035 - 1044
  • [35] Decompositions of the 3-uniform hypergraphs Kv(3) into hypergraphs of a certain type
    Feng, Tao
    Chang, Yan-xun
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (07): : 1035 - 1044
  • [36] On the rainbow matching conjecture for 3-uniform hypergraphs
    Gao, Jun
    Lu, Hongliang
    Ma, Jie
    Yu, Xingxing
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (11) : 2423 - 2440
  • [37] BIG RAMSEY DEGREES OF 3-UNIFORM HYPERGRAPHS
    Balko, M.
    Chodounsky, D.
    Hubicka, J.
    Konecny, M.
    Vena, L.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 415 - 422
  • [38] On line graphs of linear 3-uniform hypergraphs
    Metelsky, Y
    Tyshkevich, R
    JOURNAL OF GRAPH THEORY, 1997, 25 (04) : 243 - 251
  • [39] Quasirandomness, counting and regularity for 3-uniform hypergraphs
    Gowers, WT
    COMBINATORICS PROBABILITY & COMPUTING, 2006, 15 (1-2): : 143 - 184
  • [40] Counting small cliques in 3-uniform hypergraphs
    Peng, Y
    Rödl, V
    Skokan, J
    COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (03): : 371 - 413