Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework

被引:418
|
作者
Alsaiari, Shahad K. [1 ]
Patil, Sachin [1 ]
Alyami, Mram [1 ]
Alamoudi, Kholod O. [1 ]
Aleisa, Fajr A. [2 ]
Merzaban, Jasmeen S. [2 ]
Li, Mo [3 ]
Khashab, Niveen M. [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Adv Membranes & Porous Mat Ctr, Smart Hybrid Mat SHMs Lab, Thuwal 239556900, Saudi Arabia
[2] King Abdullah Univ Sci & Technol KAUST, Div Biol & Environm Sci & Engn, Cell Migrat & Signaling Lab, Thuwal 239556900, Saudi Arabia
[3] King Abdullah Univ Sci & Technol KAUST, Div Biol & Environm Sci & Engn, Stem Cell & Regenerat Lab, Thuwal 239556900, Saudi Arabia
关键词
METAL-ORGANIC FRAMEWORKS; IN-VIVO; RNA; CHALLENGES; SYSTEM; CELLS; VITRO; CAS9;
D O I
10.1021/jacs.7b11754
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CRISPR/Cas9 is a combined protein (Cas9) and an engineered single guide RNA (sgRNA) genome editing platform that offers revolutionary solutions to genetic diseases. It has, however, a double delivery problem owning to the large protein size and the highly charged RNA component. In this work, we report the first example of CRISPR/Cas9 encapsulated by nanoscale zeolitic imidazole frameworks (ZIFs) with a loading efficiency of 17% and enhanced endosomal escape promoted by the protonated imidazole moieties. The gene editing potential of CRISPR/Cas9 encapsulated by ZIF-8 (CC-ZIFs) is further verified by knocking down the gene expression of green fluorescent protein by 37% over 4 days. The nanoscale CC-ZIFs are biocompatible and easily scaled-up offering excellent loading capacity and controlled codelivery of intact Cas9 protein and sgRNA.
引用
收藏
页码:143 / 146
页数:4
相关论文
共 50 条
  • [41] Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells
    Hindriksen, Sanne
    Bramer, Arne J.
    My Anh Truong
    Vromans, Martijn J. M.
    Post, Jasmin B.
    Verlaan-Klink, Ingrid
    Snippert, Hugo J.
    Lens, Susanne M. A.
    Hadders, Michael A.
    PLOS ONE, 2017, 12 (06):
  • [42] Efficient Editing of an Adenoviral Vector Genome with CRISPR/Cas9
    Li, Qiang
    Wang, Hui
    Gong, Chen-yu
    Chen, Zhao
    Yang, Jia-xing
    Shao, Hong-wei
    Zhang, Wen-feng
    INDIAN JOURNAL OF MICROBIOLOGY, 2021, 61 (01) : 91 - 95
  • [43] CRISPR/Cas9 genome editing through in planta transformation
    Zlobin, Nikolay E.
    Lebedeva, Marina V.
    Taranov, Vasiliy V.
    CRITICAL REVIEWS IN BIOTECHNOLOGY, 2020, 40 (02) : 153 - 168
  • [44] Improving the efficiency of Cas9/CRISPR genome engineering by optimizing Cas9 delivery
    Pelczar, Pawel
    Oller, Heide
    Kornete, Mara
    Schreiner, Dietmar
    Hermann, Mario
    Jeker, Lukas
    TRANSGENIC RESEARCH, 2016, 25 (02) : 255 - 256
  • [45] CRISPR/Cas9 for genome editing: progress, implications and challenges
    Zhang, Feng
    Wen, Yan
    Guo, Xiong
    HUMAN MOLECULAR GENETICS, 2014, 23 : R40 - R46
  • [46] Genome editing of Clostridium autoethanogenum using CRISPR/Cas9
    Nagaraju, Shilpa
    Davies, Naomi Kathleen
    Walker, David Jeffrey Fraser
    Kopke, Michael
    Simpson, Sean Dennis
    BIOTECHNOLOGY FOR BIOFUELS, 2016, 9
  • [47] CRISPR/Cas9 genome editing of RDEB mutation hotspot
    Naso, G.
    Petrova, A.
    Qasim, W.
    HUMAN GENE THERAPY, 2019, 30 (02) : A8 - A8
  • [48] Recent Advances in Genome Editing Using CRISPR/Cas9
    Ding, Yuduan
    Li, Hong
    Chen, Ling-Ling
    Xie, Kabin
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [49] Genome editing of Clostridium autoethanogenum using CRISPR/Cas9
    Shilpa Nagaraju
    Naomi Kathleen Davies
    David Jeffrey Fraser Walker
    Michael Köpke
    Séan Dennis Simpson
    Biotechnology for Biofuels, 9
  • [50] Insights into maize genome editing via CRISPR/Cas9
    Agarwal, Astha
    Yadava, Pranjal
    Kumar, Krishan
    Singh, Ishwar
    Kaul, Tanushri
    Pattanayak, Arunava
    Agrawal, Pawan Kumar
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2018, 24 (02) : 175 - 183