Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework

被引:418
|
作者
Alsaiari, Shahad K. [1 ]
Patil, Sachin [1 ]
Alyami, Mram [1 ]
Alamoudi, Kholod O. [1 ]
Aleisa, Fajr A. [2 ]
Merzaban, Jasmeen S. [2 ]
Li, Mo [3 ]
Khashab, Niveen M. [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Adv Membranes & Porous Mat Ctr, Smart Hybrid Mat SHMs Lab, Thuwal 239556900, Saudi Arabia
[2] King Abdullah Univ Sci & Technol KAUST, Div Biol & Environm Sci & Engn, Cell Migrat & Signaling Lab, Thuwal 239556900, Saudi Arabia
[3] King Abdullah Univ Sci & Technol KAUST, Div Biol & Environm Sci & Engn, Stem Cell & Regenerat Lab, Thuwal 239556900, Saudi Arabia
关键词
METAL-ORGANIC FRAMEWORKS; IN-VIVO; RNA; CHALLENGES; SYSTEM; CELLS; VITRO; CAS9;
D O I
10.1021/jacs.7b11754
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CRISPR/Cas9 is a combined protein (Cas9) and an engineered single guide RNA (sgRNA) genome editing platform that offers revolutionary solutions to genetic diseases. It has, however, a double delivery problem owning to the large protein size and the highly charged RNA component. In this work, we report the first example of CRISPR/Cas9 encapsulated by nanoscale zeolitic imidazole frameworks (ZIFs) with a loading efficiency of 17% and enhanced endosomal escape promoted by the protonated imidazole moieties. The gene editing potential of CRISPR/Cas9 encapsulated by ZIF-8 (CC-ZIFs) is further verified by knocking down the gene expression of green fluorescent protein by 37% over 4 days. The nanoscale CC-ZIFs are biocompatible and easily scaled-up offering excellent loading capacity and controlled codelivery of intact Cas9 protein and sgRNA.
引用
收藏
页码:143 / 146
页数:4
相关论文
共 50 条
  • [21] CRISPR/CAS9 GENOME EDITING FOR NEURODEGENERATIVE DISEASES
    Nojadeh, Jafar Nouri
    Eryilmaz, Nur Seren Bildiren
    Erguder, Berrin Imge
    EXCLI JOURNAL, 2023, 22 : 567 - 582
  • [22] CRISPR/CAS9, the king of genome editing tools
    A. V. Bannikov
    A. V. Lavrov
    Molecular Biology, 2017, 51 : 514 - 525
  • [23] Advances in therapeutic CRISPR/Cas9 genome editing
    Schwank, G.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1053 - 1053
  • [24] CRISPR/CAS9, the King of Genome Editing Tools
    Bannikov, A. V.
    Lavrov, A. V.
    MOLECULAR BIOLOGY, 2017, 51 (04) : 514 - 525
  • [25] CRISPR/CAS9: THE GOLD STANDARD OF GENOME EDITING?
    Gleeson, Alfie
    Sawyer, Abigail
    BIOTECHNIQUES, 2018, 64 (06) : 239 - 244
  • [26] CRISPR/Cas9 and other techniques for genome editing
    Hartung, Frank
    Schiemann, Jochen
    Sprink, Thorben
    ZWEITES SYMPOSIUM ZIERPFLANZENZUCHTUNG, 2017, 2017, 457 : 36 - 39
  • [27] Genome Editing in Cotton with the CRISPR/Cas9 System
    Gao, Wei
    Long, Lu
    Tian, Xinquan
    Xu, Fuchun
    Liu, Ji
    Singh, Prashant K.
    Botella, Jose R.
    Song, Chunpeng
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [28] Advances in therapeutic CRISPR/Cas9 genome editing
    Savic, Natasa
    Schwank, Gerald
    TRANSLATIONAL RESEARCH, 2016, 168 : 15 - 21
  • [29] A glance at genome editing with CRISPR–Cas9 technology
    Antara Barman
    Bornali Deb
    Supriyo Chakraborty
    Current Genetics, 2020, 66 : 447 - 462
  • [30] Translating CRISPR/Cas9 genome editing into therapeutics
    Barnes, T. M.
    HUMAN GENE THERAPY, 2016, 27 (11) : A140 - A141