Revisiting Deep Hyperspectral Feature Extraction Networks via Gradient Centralized Convolution

被引:29
|
作者
Roy, Swalpa Kumar [1 ]
Kar, Purbayan [1 ]
Hong, Danfeng [2 ]
Wu, Xin [3 ,4 ]
Plaza, Antonio [5 ]
Chanussot, Jocelyn [6 ]
机构
[1] Jalpaiguri Govt Engn Coll, Dept Comp Sci & Engn, Jalpaiguri 735102, India
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[3] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[4] Beijing Key Lab Fract Signals & Syst, Beijing 100081, Peoples R China
[5] Univ Extremadura, Hyperspectral Comp Lab, Dept Technol Comp & Commun, Escuela Politecn, Caceres 10003, Spain
[6] Univ Grenoble Alpes, INRIA, CNRS, Grenoble INP,LJK, F-38000 Grenoble, France
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Convolutional neural networks (CNNs); generalized gradient centralized 3D convolution (G2C-Conv3D); gradient centralized 3D convolution (GC-Conv3D); hyperspectral images (HSIs); ResNets; NEURAL-NETWORKS; SPATIAL CLASSIFICATION; IMAGE CLASSIFICATION; RESIDUAL NETWORK; BINARY PATTERNS; DIMENSIONALITY; INFORMATION; GRAPH;
D O I
10.1109/TGRS.2021.3120198
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The hyperspectral images are composed of a variety of textures across the different bands which increase the spectral similarity and make it difficult to predict the pixel-wise labels without inducing additional complexity at the feature level. To extract robust and discriminative features from the different regions of land cover, the hyperspectral research community is still seeking such type of convolutions which can efficiently deal with fine-grained texture information during the feature extraction phase, which often overlook this aspect by vanilla convolution. To overcome the above shortcoming, this article proposes a generalized gradient centralized 3D convolution (G2C-Conv3D) operation, which is a weighted combination between the vanilla and gradient centralized 3D convolutions (GC-Conv3D) to extract both the intensity-level semantic information and gradient-level information. This can be easily plugged into the existing HSI feature extraction networks to boost the performance of accurate prediction for land-cover types. To validate the feasibility of the proposed G2C-Conv3D, we have considered the existing CNN3D, MS3DNet, ContextNet, and SSRN feature extraction models and as well as CAE3D, VAE3D, and SAE3D autoencoder (AE) networks, respectively. All these networks are embedded with G2C-Conv3D convolution to implement both generalized gradient centralized feature extraction networks (G2C-FE) and generalized gradient centralized AE networks (G2C-AE) for fine-grained spectral-spatial feature learning. In addition, G2C-Conv2D is also considered with few networks. The extensive experiments are conducted on four most widely used hyperspectral datasets i.e., IP, KSC, UH, and UP, respectively, and compared with the nine methods. The results demonstrate that the proposed G2C-Conv3D can effectively enhance the feature learning ability of the existing networks and both the qualitative and quantitative results show the superiority and effectiveness of the proposed G2C-Conv3D. The source codes will he publicly available at https://github.com/danfenghong/G2C-Conv3D-HSI.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Dimensionality Reduction of Hyperspectral Data via Spectral Feature Extraction
    Mojaradi, Barat
    Abrishami-Moghaddam, Hamid
    Zoej, Mohammad Javad Valadan
    Duin, Robert P. W.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (07): : 2091 - 2105
  • [22] Robust online tracking via sparse gradient convolution networks?
    Xu Qi
    Wang Huabin
    Wu Qilin
    Tao Liang
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 90
  • [23] Deep Belief Networks for Feature Fusion in Hyperspectral Image Classification
    Ghassemi, Mohammad
    Ghassemian, Hassan
    Imani, Maryam
    PROCEEDINGSS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON AEROSPACE ELECTRONICS AND REMOTE SENSING TECHNOLOGY (ICARES 2018), 2018,
  • [24] Deep Learning for Hyperspectral Data Classification through Exponential Momentum Deep Convolution Neural Networks
    Yue, Qi
    Ma, Caiwen
    JOURNAL OF SENSORS, 2016, 2016
  • [25] Hyperspectral Data Feature Extraction Using Deep Learning Hybrid Model
    Jiang, Xinhua
    Xue, Heru
    Zhang, Lina
    Gao, Xiaojing
    Zhou, Yanqing
    Bai, Jie
    WIRELESS PERSONAL COMMUNICATIONS, 2018, 102 (04) : 3529 - 3543
  • [26] Hyperspectral Data Feature Extraction Using Deep Learning Hybrid Model
    Xinhua Jiang
    Heru Xue
    Lina Zhang
    Xiaojing Gao
    Yanqing Zhou
    Jie Bai
    Wireless Personal Communications, 2018, 102 : 3529 - 3543
  • [27] Deep Siamese Network with Handcrafted Feature Extraction for Hyperspectral Image Classification
    Pallavi Ranjan
    Ashish Girdhar
    Multimedia Tools and Applications, 2024, 83 : 2501 - 2526
  • [28] Deep Siamese Network with Handcrafted Feature Extraction for Hyperspectral Image Classification
    Ranjan, Pallavi
    Girdhar, Ashish
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (1) : 2501 - 2526
  • [29] Synergistic spectral and spatial feature analysis with transformer and convolution networks for hyperspectral image classification
    Yadav, Dhirendra Prasad
    Kumar, Deepak
    Jalal, Anand Singh
    Kumar, Ankit
    Kada, B.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (04) : 2975 - 2990
  • [30] Synergistic spectral and spatial feature analysis with transformer and convolution networks for hyperspectral image classification
    Dhirendra Prasad Yadav
    Deepak Kumar
    Anand Singh Jalal
    Ankit Kumar
    B. Kada
    Signal, Image and Video Processing, 2024, 18 : 2975 - 2990