Deep Siamese Network with Handcrafted Feature Extraction for Hyperspectral Image Classification

被引:8
|
作者
Ranjan, Pallavi [1 ]
Girdhar, Ashish [1 ]
机构
[1] Delhi Technol Univ, New Delhi, India
关键词
Hyperspectral Classification; Convolution Neural Network; Siamese CNN; Deep Learning; One shot classification; Feature Extraction; NEURAL-NETWORK;
D O I
10.1007/s11042-023-15444-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The prominence of deep learning models for classification of hyperspectral images is directly proportional to their ability to exploit spatial context and spectral bands jointly. The effectiveness of these deep learning models, however, is heavily reliant on a good amount of labelled training samples. In contrast, one of the biggest challenges with hyperspectral images is limited labelled samples availability as getting the samples annotated is a time consuming and labor-intensive process. Traditional machine learning algorithms are available for classification with a higher training time and very deep pre-trained networks like GoogleNet and VGGNet did not work well for hyperspectral image classification. The idea of one shot classification has been quite motivating in recent years to deal with the problems of limited labelled samples, imbalanced distribution of samples leading to poor classification results and overfitting. To implement one shot classification model and overcome these challenges, the proposed work is based on Siamese network that can work with limited samples or imbalanced samples. The proposed Siamese network has a handcrafted feature generation network that extracts discriminative features from the image. Experimental findings on two benchmark hyperspectral datasets demonstrate that the proposed network is capable of improving the classification performance with an overall accuracy of 95.17 and 93.25 for Pavia U and Indian Pines dataset respectively with a small scale trained data.
引用
收藏
页码:2501 / 2526
页数:26
相关论文
共 50 条
  • [1] Deep Siamese Network with Handcrafted Feature Extraction for Hyperspectral Image Classification
    Pallavi Ranjan
    Ashish Girdhar
    Multimedia Tools and Applications, 2024, 83 : 2501 - 2526
  • [2] DEEP FEATURE EXTRACTION BASED ON SIAMESE NETWORK AND AUTO-ENCODER FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Miao, Jiajia
    Wang, Bin
    Wu, Xiaofeng
    Zhang, Liming
    Hu, Bo
    Zhang, Jian Qiu
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 397 - 400
  • [3] Supervised Deep Feature Extraction for Hyperspectral Image Classification
    Liu, Bing
    Yu, Xuchu
    Zhang, Pengqiang
    Yu, Anzhu
    Fu, Qiongying
    Wei, Xiangpo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (04): : 1909 - 1921
  • [4] Hyperspectral Image Classification with IFormer Network Feature Extraction
    Ren, Qi
    Tu, Bing
    Liao, Sha
    Chen, Siyuan
    REMOTE SENSING, 2022, 14 (19)
  • [5] Hyperspectral Image Classification With Deep Feature Fusion Network
    Song, Weiwei
    Li, Shutao
    Fang, Leyuan
    Lu, Ting
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (06): : 3173 - 3184
  • [6] TRIPLET CONSTRAINED DEEP FEATURE EXTRACTION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Alam, Fahim Irfan
    Zhou, Jun
    Liew, Alan Wee-Chung
    Jo, Jun
    Gao, Yongsheng
    2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,
  • [7] A Semisupervised Siamese Network for Hyperspectral Image Classification
    Jia, Sen
    Jiang, Shuguo
    Lin, Zhijie
    Xu, Meng
    Sun, Weiwei
    Huang, Qiang
    Zhu, Jiasong
    Jia, Xiuping
    IEEE Transactions on Geoscience and Remote Sensing, 2022, 60
  • [8] A Semisupervised Siamese Network for Hyperspectral Image Classification
    Jia, Sen
    Jiang, Shuguo
    Lin, Zhijie
    Xu, Meng
    Sun, Weiwei
    Huang, Qiang
    Zhu, Jiasong
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [9] Feature Extraction for Hyperspectral Image Classification
    Uddin, M. P.
    Mamun, M. A.
    Hossain, M. A.
    2017 IEEE REGION 10 HUMANITARIAN TECHNOLOGY CONFERENCE (R10-HTC), 2017, : 379 - 382
  • [10] Dilated Convolutional Neural Network for Hyperspectral Image Feature Extraction and Classification
    Zhang Feng-zhe
    Xiao Lu
    Wang Hai-bin
    Gao Hua-yu
    Wang Jun-xiang
    Lu Chao
    ELEVENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2019), 2020, 11373