Dilated Convolutional Neural Network for Hyperspectral Image Feature Extraction and Classification

被引:1
|
作者
Zhang Feng-zhe [1 ]
Xiao Lu [1 ]
Wang Hai-bin [1 ]
Gao Hua-yu [1 ]
Wang Jun-xiang [1 ]
Lu Chao [1 ]
机构
[1] Beijing Inst Astronaut Syst Engn, Beijing, Peoples R China
关键词
HSI Classification; Dilated Convolution; Spectral-spatial; Convolutional Neural Network;
D O I
10.1117/12.2558057
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, a dilated convolutional neural network is proposed for hyperspectral image classification. Compared with other methods, 2-dimension dilated convolution is used for the first time to extract and classify the spatial-spectral features in hyperspectral image processing fields. Firstly, 1-dimension convolution is extended to 2-dimension convolution for spatial-spectral features extraction. Secondly, a dilated convolutional structure is utilized to fuse the multi-scale information, which is used to extract the multi-scale information without loss of resolution. The experiments of University of Pavia were repeated with the method proposed in this paper, and some better results are obtained, which proved the effectiveness of the proposed model.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Morphologically dilated convolutional neural network for hyperspectral image classification
    Kumar, Vinod
    Singh, Ravi Shankar
    Dua, Yaman
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2022, 101
  • [2] Hyperspectral Image Classification Based on Dilated Convolutional Attention Neural Network
    Zhang Xiangdong
    Wang Tengjun
    Zhu Shaojun
    Yang Yun
    ACTA OPTICA SINICA, 2021, 41 (03)
  • [3] Multi-Scale Dilated Convolutional Neural Network for Hyperspectral Image Classification
    Shanshan Zheng
    Wen Liu
    Rui Shan
    Jingyi Zhao
    Guoqian Jiang
    Zhi Zhang
    JournalofHarbinInstituteofTechnology(NewSeries), 2021, 28 (04) : 25 - 32
  • [4] MULTI-SCALE DILATED RESIDUAL CONVOLUTIONAL NEURAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Pooja, Kumari
    Nidamanuri, Rama Rao
    Mishra, Deepak
    2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [5] Adaptive Batch Extraction for Hyperspectral Image Classification Based on Convolutional Neural Network
    Hamouda, Maissa
    Ettabaa, Karim Saheb
    Bouhlel, Med Salim
    IMAGE AND SIGNAL PROCESSING (ICISP 2018), 2018, 10884 : 310 - 318
  • [6] Weighted Feature Fusion of Convolutional Neural Network and Graph Attention Network for Hyperspectral Image Classification
    Dong, Yanni
    Liu, Quanwei
    Du, Bo
    Zhang, Liangpei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1559 - 1572
  • [7] Hyperspectral Image Classification Based on Three-Dimensional Dilated Convolutional Residual Neural Network
    Yan Mingjing
    Su Xiyou
    ACTA OPTICA SINICA, 2020, 40 (16)
  • [8] Hyperspectral Image Classification Based on Three-Dimensional Dilated Convolutional Residual Neural Network
    Yan M.
    Su X.
    Guangxue Xuebao/Acta Optica Sinica, 2020, 40 (16):
  • [9] Sandwich Convolutional Neural Network for Hyperspectral Image Classification Using Spectral Feature Enhancement
    Gao, Hongmin
    Chen, Zhonghao
    Li, Chenming
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 3006 - 3015
  • [10] Consolidated Convolutional Neural Network for Hyperspectral Image Classification
    Chang, Yang-Lang
    Tan, Tan-Hsu
    Lee, Wei-Hong
    Chang, Lena
    Chen, Ying-Nong
    Fan, Kuo-Chin
    Alkhaleefah, Mohammad
    REMOTE SENSING, 2022, 14 (07)