Deep Siamese Network with Handcrafted Feature Extraction for Hyperspectral Image Classification

被引:8
|
作者
Ranjan, Pallavi [1 ]
Girdhar, Ashish [1 ]
机构
[1] Delhi Technol Univ, New Delhi, India
关键词
Hyperspectral Classification; Convolution Neural Network; Siamese CNN; Deep Learning; One shot classification; Feature Extraction; NEURAL-NETWORK;
D O I
10.1007/s11042-023-15444-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The prominence of deep learning models for classification of hyperspectral images is directly proportional to their ability to exploit spatial context and spectral bands jointly. The effectiveness of these deep learning models, however, is heavily reliant on a good amount of labelled training samples. In contrast, one of the biggest challenges with hyperspectral images is limited labelled samples availability as getting the samples annotated is a time consuming and labor-intensive process. Traditional machine learning algorithms are available for classification with a higher training time and very deep pre-trained networks like GoogleNet and VGGNet did not work well for hyperspectral image classification. The idea of one shot classification has been quite motivating in recent years to deal with the problems of limited labelled samples, imbalanced distribution of samples leading to poor classification results and overfitting. To implement one shot classification model and overcome these challenges, the proposed work is based on Siamese network that can work with limited samples or imbalanced samples. The proposed Siamese network has a handcrafted feature generation network that extracts discriminative features from the image. Experimental findings on two benchmark hyperspectral datasets demonstrate that the proposed network is capable of improving the classification performance with an overall accuracy of 95.17 and 93.25 for Pavia U and Indian Pines dataset respectively with a small scale trained data.
引用
收藏
页码:2501 / 2526
页数:26
相关论文
共 50 条
  • [11] Hyperspectral Image Classification Based on Multilevel Joint Feature Extraction Network
    Lu, Xiaochen
    Yang, Dezheng
    Jia, Fengde
    Yang, Yunlong
    Zhang, Lei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 10977 - 10989
  • [12] Grid Network: Feature Extraction in Anisotropic Perspective for Hyperspectral Image Classification
    Chen, Zhonghao
    Hong, Danfeng
    Gao, Hongmin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [13] Deep Feature Aggregation Network for Hyperspectral Remote Sensing Image Classification
    Zhang, Chunju
    Li, Guandong
    Lei, Runmin
    Du, Shihong
    Zhang, Xueying
    Zheng, Hui
    Wu, Zhaofu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 5314 - 5325
  • [14] Salient feature extraction for hyperspectral image classification
    Yu, Xuchu
    Wang, Ruirui
    Liu, Bing
    Yu, Anzhu
    REMOTE SENSING LETTERS, 2019, 10 (06) : 553 - 562
  • [15] Slow feature extraction for hyperspectral image classification
    Liu, Bing
    Yu, Anzhu
    Tan, Xiong
    Wang, Ruirui
    REMOTE SENSING LETTERS, 2021, 12 (05) : 429 - 438
  • [16] Feature extraction for hyperspectral image classification: a review
    Kumar, Brajesh
    Dikshit, Onkar
    Gupta, Ashwani
    Singh, Manoj Kumar
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (16) : 6248 - 6287
  • [17] Hyperspectral image classification with unsupervised feature extraction
    Sun, Qiaoqiao
    Bourennane, Salah
    REMOTE SENSING LETTERS, 2020, 11 (05) : 475 - 484
  • [18] SPARSE FEATURE EXTRACTION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Wang, Lu
    Xie, Xiaoming
    Li, Wei
    Du, Qian
    Li, Guojun
    2015 IEEE CHINA SUMMIT & INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING, 2015, : 1067 - 1070
  • [19] Active Deep Feature Extraction for Hyperspectral Image Classification Based on Adversarial Learning
    Wang, Xue
    Tan, Kun
    Pan, Cen
    Ding, Jianwei
    Liu, Zhaoxian
    Han, Bo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [20] Residual deep PCA-based feature extraction for hyperspectral image classification
    Minchao Ye
    Chenxi Ji
    Hong Chen
    Ling Lei
    Huijuan Lu
    Yuntao Qian
    Neural Computing and Applications, 2020, 32 : 14287 - 14300