Learning Deep Features for DNA Methylation Data Analysis

被引:27
|
作者
Si, Zhongwei [1 ]
Yu, Hong [2 ]
Ma, Zhanyu [2 ]
机构
[1] Beijing Univ Posts & Telecommun, Minist Educ, Key Lab Universal Wireless Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Pattern Recognit & Intelligent Syst Lab, Beijing 100876, Peoples R China
来源
IEEE ACCESS | 2016年 / 4卷
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
DNA methylation; beat-value; deep neural network; restricted Boltzmann machine; DIMENSIONALITY; MICROARRAY; REDUCTION; MOLECULE;
D O I
10.1109/ACCESS.2016.2576598
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many studies demonstrated that the DNA methylation, which occurs in the context of a CpG, has strong correlation with diseases, including cancer. There is a strong interest in analyzing the DNA methylation data to find how to distinguish different subtypes of the tumor. However, the conventional statistical methods are not suitable for analyzing the highly dimensional DNA methylation data with bounded support. In order to explicitly capture the properties of the data, we design a deep neural network, which composes of several stacked binary restricted Boltzmann machines, to learn the low-dimensional deep features of the DNA methylation data. Experimental results show that these features perform best in breast cancer DNA methylation data cluster analysis, compared with some state-of-the-art methods.
引用
收藏
页码:2732 / 2737
页数:6
相关论文
共 50 条
  • [31] Imbalanced data learning using SMOTE and deep learning architecture with optimized features
    Suja A. Alex
    Neural Computing and Applications, 2025, 37 (2) : 967 - 984
  • [32] Deep Learning Features for Wireless Capsule Endoscopy Analysis
    Segui, Santi
    Drozdzal, Michal
    Pascual, Guillem
    Radeva, Petia
    Malagelada, Carolina
    Azpiroz, Fernando
    Vitria, Jordi
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2016, 2017, 10125 : 326 - 333
  • [33] Identification of DNA methylation-driven genes by integrative analysis of DNA methylation and transcriptome data in pancreatic adenocarcinoma
    Zhang, Wei
    Shang, Shuai
    Yang, Yingying
    Lu, Peiyao
    Wang, Teng
    Cui, Xinyi
    Tang, Xuexi
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2020, 19 (04) : 2963 - 2972
  • [34] AENet: Learning Deep Audio Features for Video Analysis
    Takahashi, Naoya
    Gygli, Michael
    Van Gool, Luc
    IEEE TRANSACTIONS ON MULTIMEDIA, 2018, 20 (03) : 513 - 524
  • [35] Learning Representative Deep Features for Image Set Analysis
    Wu, Zifeng
    Huang, Yongzhen
    Wang, Liang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2015, 17 (11) : 1960 - 1968
  • [36] Lessons Learned from Analysis of DNA Methylation Array Data
    Fridley, Brooke L.
    Armasu, Sebastian M.
    Larson, Melissa C.
    Cicek, Mine S.
    Vierkant, Robert A.
    Shridhar, Viji
    Olson, Janet E.
    Cunningham, Julie M.
    Kalli, Kimberly R.
    Goode, Ellen L.
    GENETIC EPIDEMIOLOGY, 2012, 36 (07) : 724 - 724
  • [37] Review of processing and analysis methods for DNA methylation array data
    Wilhelm-Benartzi, C. S.
    Koestler, D. C.
    Karagas, M. R.
    Flanagan, J. M.
    Christensen, B. C.
    Kelsey, K. T.
    Marsit, C. J.
    Houseman, E. A.
    Brown, R.
    BRITISH JOURNAL OF CANCER, 2013, 109 (06) : 1394 - 1402
  • [38] CpGassoc: an R function for analysis of DNA methylation microarray data
    Barfield, Richard T.
    Kilaru, Varun
    Smith, Alicia K.
    Conneely, Karen N.
    BIOINFORMATICS, 2012, 28 (09) : 1280 - 1281
  • [39] An evaluation of statistical methods for DNA methylation microarray data analysis
    Dongmei Li
    Zidian Xie
    Marc Le Pape
    Timothy Dye
    BMC Bioinformatics, 16 (1)
  • [40] Review of processing and analysis methods for DNA methylation array data
    C S Wilhelm-Benartzi
    D C Koestler
    M R Karagas
    J M Flanagan
    B C Christensen
    K T Kelsey
    C J Marsit
    E A Houseman
    R Brown
    British Journal of Cancer, 2013, 109 : 1394 - 1402