Review of processing and analysis methods for DNA methylation array data

被引:135
|
作者
Wilhelm-Benartzi, C. S. [1 ]
Koestler, D. C. [2 ]
Karagas, M. R. [2 ]
Flanagan, J. M. [1 ]
Christensen, B. C. [2 ,3 ]
Kelsey, K. T. [4 ,5 ]
Marsit, C. J. [2 ,3 ]
Houseman, E. A. [6 ]
Brown, R. [1 ,7 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Epigenet Unit, Div Canc, Dept Surg & Canc,Fac Med,Ovarian Canc Act Res Ctr, London W12 0NN, England
[2] Dartmouth Coll, Geisel Sch Med, Sect Biostat & Epidemiol, Hanover, NH 03755 USA
[3] Dartmouth Coll, Geisel Sch Med, Dept Pharmacol & Toxicol, Hanover, NH 03755 USA
[4] Brown Univ, Dept Pathol & Lab Med, Providence, RI 02912 USA
[5] Brown Univ, Dept Epidemiol, Providence, RI 02912 USA
[6] Oregon State Univ, Dept Publ Hlth, Corvallis, OR 97331 USA
[7] Inst Canc Res, Sect Mol Pathol, Sutton, Surrey, England
关键词
DNA methylation; microarray; processing; analysis; bioconductor and R packages; GENOME-WIDE METHYLATION; SURROGATE VARIABLE ANALYSIS; ILLUMINA INFINIUM PLATFORM; GRAPHICAL USER-INTERFACE; MICROARRAY DATA; DIFFERENTIAL METHYLATION; GENE-EXPRESSION; QUANTILE NORMALIZATION; SUBSET-QUANTILE; R PACKAGE;
D O I
10.1038/bjc.2013.496
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The promise of epigenome-wide association studies and cancer-specific somatic DNA methylation changes in improving our understanding of cancer, coupled with the decreasing cost and increasing coverage of DNA methylation microarrays, has brought about a surge in the use of these technologies. Here, we aim to provide both a review of issues encountered in the processing and analysis of array-based DNA methylation data and a summary of the advantages of recent approaches proposed for handling those issues, focusing on approaches publicly available in open-source environments such as R and Bioconductor. We hope that the processing tools and analysis flowchart described herein will facilitate researchers to effectively use these powerful DNA methylation array-based platforms, thereby advancing our understanding of human health and disease.
引用
收藏
页码:1394 / 1402
页数:9
相关论文
共 50 条
  • [1] Review of processing and analysis methods for DNA methylation array data
    C S Wilhelm-Benartzi
    D C Koestler
    M R Karagas
    J M Flanagan
    B C Christensen
    K T Kelsey
    C J Marsit
    E A Houseman
    R Brown
    British Journal of Cancer, 2013, 109 : 1394 - 1402
  • [2] Methods in DNA methylation array dataset analysis: A review
    Sahoo, Karishma
    Sundararajan, Vino
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2024, 23 : 2304 - 2325
  • [3] Computational Methods for Analysis of DNA Methylation Data
    Di Lena, Pietro
    Nardini, Christine
    Pellegrini, Matteo
    FRONTIERS IN BIOINFORMATICS, 2022, 2
  • [4] Lessons Learned from Analysis of DNA Methylation Array Data
    Fridley, Brooke L.
    Armasu, Sebastian M.
    Larson, Melissa C.
    Cicek, Mine S.
    Vierkant, Robert A.
    Shridhar, Viji
    Olson, Janet E.
    Cunningham, Julie M.
    Kalli, Kimberly R.
    Goode, Ellen L.
    GENETIC EPIDEMIOLOGY, 2012, 36 (07) : 724 - 724
  • [5] methylR: a graphical interface for comprehensive DNA methylation array data analysis
    Volpe, Massimiliano
    Das, Jyotirmoy
    BIOINFORMATICS, 2023, 39 (04)
  • [6] A comparison of cluster analysis methods using DNA methylation data
    Siegmund, KD
    Laird, PW
    Laird-Offringa, IA
    BIOINFORMATICS, 2004, 20 (12) : 1896 - 1904
  • [7] An evaluation of statistical methods for DNA methylation microarray data analysis
    Dongmei Li
    Zidian Xie
    Marc Le Pape
    Timothy Dye
    BMC Bioinformatics, 16 (1)
  • [8] An evaluation of statistical methods for DNA methylation microarray data analysis
    Li, Dongmei
    Xie, Zidian
    Le Pape, Marc
    Dye, Timothy
    BMC BIOINFORMATICS, 2015, 16
  • [9] Methods of DNA methylation analysis
    Shen, Lanlan
    Waterland, Robert A.
    CURRENT OPINION IN CLINICAL NUTRITION AND METABOLIC CARE, 2007, 10 (05): : 576 - 581
  • [10] CoMeBack: DNA methylation array data analysis for co-methylated regions
    Gatev, Evan
    Gladish, Nicole
    Mostafavi, Sara
    Kobor, Michael S.
    BIOINFORMATICS, 2020, 36 (09) : 2675 - 2683