Spherical strong-shock generation for shock-ignition inertial fusion

被引:51
|
作者
Theobald, W. [1 ,2 ]
Nora, R. [1 ,2 ,3 ,4 ]
Seka, W. [1 ,2 ]
Lafon, M. [1 ,2 ]
Anderson, K. S. [1 ,2 ]
Hohenberger, M. [1 ,2 ]
Marshall, F. J. [1 ,2 ]
Michel, D. T. [1 ,2 ]
Solodov, A. A. [1 ,2 ]
Stoeckl, C. [1 ,2 ]
Edgell, D. H. [1 ,2 ]
Yaakobi, B. [1 ,2 ]
Casner, A. [5 ]
Reverdin, C. [5 ]
Ribeyre, X. [6 ]
Shvydky, A. [1 ,2 ]
Vallet, A. [6 ]
Peebles, J. [7 ]
Beg, F. N. [7 ]
Wei, M. S. [8 ]
Betti, R. [1 ,2 ,3 ,4 ]
机构
[1] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
[2] Univ Rochester, Fus Sci Ctr, Rochester, NY 14623 USA
[3] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA
[4] Univ Rochester, Dept Phys, Rochester, NY 14623 USA
[5] DIF, DAM, CEA, F-91297 Arpajon, France
[6] Univ Bordeaux CNRS CEA, CELIA Ctr Lasers Intenses & Applicat, UMR 5107, F-33400 Talence, France
[7] Univ Calif San Diego, La Jolla, CA 92093 USA
[8] Gen Atom Co, San Diego, CA 92121 USA
关键词
SCALE-LENGTH PLASMAS; LASER; MATTER; OMEGA;
D O I
10.1063/1.4920956
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recent experiments on the Laboratory for Laser Energetics' OMEGA laser have been carried out to produce strong shocks in solid spherical targets with direct laser illumination. The shocks are launched at pressures of several hundred Mbars and reach Gbar upon convergence. The results are relevant to the validation of the shock-ignition scheme and to the development of an OMEGA experimental platform to study material properties at Gbar pressures. The experiments investigate the strength of the ablation pressure and the hot-electron production at incident laser intensities of similar to 2 to 6 x 10(15) W/cm(2) and demonstrate ablation pressures exceeding 300 Mbar, which is crucial to developing a shockignition target design for the National Ignition Facility. The timing of the x-ray flash from shock convergence in the center of the solid plastic target is used to infer the ablation and shock pressures. Laser-plasma instabilities produce hot-electrons with a moderate temperature (<100 keV). The instantaneous conversion efficiencies of laser power into hot-electron power reached up to similar to 15% in the intensity spike. The large amount of hot electrons is correlated with an earlier x-ray flash and a strong increase in its magnitude. This suggests that hot electrons contribute to the augmentation of the shock strength. (c) 2015 AIP Publishing LLC.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Inflationary stimulated Raman scattering in shock-ignition plasmas
    Spencer, S. J.
    Seaton, A. G.
    Goffrey, T.
    Arber, T. D.
    PHYSICS OF PLASMAS, 2020, 27 (12)
  • [22] Stability of shocks relating to the shock ignition inertial fusion energy scheme
    Davie, C. J.
    Bush, I. A.
    Evans, R. G.
    PHYSICS OF PLASMAS, 2014, 21 (08)
  • [23] Interaction physics for the shock ignition scheme of inertial confinement fusion targets
    Depierreux, S.
    Goyon, C.
    Lewis, K.
    Bandulet, H.
    Michel, D. T.
    Loisel, G.
    Yahia, V.
    Tassin, V.
    Stenz, C.
    Borisenko, N. G.
    Nazarov, W.
    Limpouch, J.
    Masson-Laborde, P. E.
    Loiseau, P.
    Casanova, M.
    Nicolai, Ph
    Hueller, S.
    Pesme, D.
    Riconda, C.
    Tikhonchuk, V. T.
    Labaune, C.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (12)
  • [24] The control of hot-electron preheat in shock-ignition implosions
    Trela, J.
    Theobald, W.
    Anderson, K. S.
    Batani, D.
    Betti, R.
    Casner, A.
    Delettrez, J. A.
    Frenje, J. A.
    Glebov, V. Yu.
    Ribeyre, X.
    Solodov, A. A.
    Stoeckl, M.
    Stoeckl, C.
    PHYSICS OF PLASMAS, 2018, 25 (05)
  • [25] Spectroscopic modeling of an argon-doped shock-ignition implosion
    Florido, R.
    Mancini, R. C.
    Nagayama, T.
    Tommasini, R.
    Delettrez, J. A.
    Regan, S. P.
    Yaakobi, B.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (10):
  • [26] Assessing and improving strong-shock accuracy in the material point method
    Povolny, Stefan J.
    Homel, Michael A.
    Herbold, Eric B.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 416
  • [27] Shock Ignition: A New Approach to High Gain Inertial Confinement Fusion on the National Ignition Facility
    Perkins, L. J.
    Betti, R.
    LaFortune, K. N.
    Williams, W. H.
    PHYSICAL REVIEW LETTERS, 2009, 103 (04)
  • [28] Nonlocal effects on the shock-augmented ignition scheme of laser inertial fusion
    Yuan, W. Q.
    Zhao, Z. H.
    Zhu, S. P.
    He, X. T.
    Qiao, B.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [29] Energy-conserving Relativistic Corrections to Strong-shock Propagation
    Coughlin, Eric R.
    ASTROPHYSICAL JOURNAL, 2019, 880 (02):
  • [30] Prediction of strong-shock structure using the bimodal distribution function
    Solovchuk, Maxim A.
    Sheu, Tony W. H.
    PHYSICAL REVIEW E, 2011, 83 (02):