Tur?n inequalities for the plane partition function

被引:17
|
作者
Ono, Ken [1 ]
Pujahari, Sudhir [2 ]
Rolen, Larry [3 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
[2] HBNI, Natl Inst Sci Educ & Res Bhubaneswar, Sch Math Sci, PO Jatni, Bhubaneswar 752050, Odisha, India
[3] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
关键词
Plane partition function; Log-concavity; Tur?n inequalities;
D O I
10.1016/j.aim.2022.108692
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Heim, Neuhauser and Troger recently established some inequalities for MacMahon's plane partition function PL(n) that generalize known results for Euler's partition function p(n). They also conjectured that PL(n) is log-concave for all n > 12. We prove this conjecture. Moreover, for every d > 1, we prove their speculation that PL(n) satisfies the degree d Turan inequalities for sufficiently large n. The case where d = 2 is the case of log-concavity.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:31
相关论文
共 50 条