Tur?n inequalities for the plane partition function

被引:17
|
作者
Ono, Ken [1 ]
Pujahari, Sudhir [2 ]
Rolen, Larry [3 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
[2] HBNI, Natl Inst Sci Educ & Res Bhubaneswar, Sch Math Sci, PO Jatni, Bhubaneswar 752050, Odisha, India
[3] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
关键词
Plane partition function; Log-concavity; Tur?n inequalities;
D O I
10.1016/j.aim.2022.108692
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Heim, Neuhauser and Troger recently established some inequalities for MacMahon's plane partition function PL(n) that generalize known results for Euler's partition function p(n). They also conjectured that PL(n) is log-concave for all n > 12. We prove this conjecture. Moreover, for every d > 1, we prove their speculation that PL(n) satisfies the degree d Turan inequalities for sufficiently large n. The case where d = 2 is the case of log-concavity.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] Turán type inequalities for generalized complete elliptic integrals
    Árpád Baricz
    Mathematische Zeitschrift, 2007, 256
  • [22] Turán Inequalities and Complete Monotonicity for a Class of Entire Functions
    C. Bartholmé
    P. Patie
    Analysis Mathematica, 2021, 47 : 507 - 527
  • [23] Some inequalities between M(a, b, c; L; n) and the partition function p(n)
    He, Bing
    Li, Linpei
    Cao, Jian
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024,
  • [24] Turán type inequalities for the q-exponential functions
    Mehrez K.
    Arabian Journal of Mathematics, 2017, 6 (4) : 309 - 314
  • [25] Turán—Erőd Type Converse Markov Inequalities on General Convex Domains of the Plane in the Boundary Lq Norm
    Polina Yu. Glazyrina
    Szilárd Gy. Révész
    Proceedings of the Steklov Institute of Mathematics, 2018, 303 : 78 - 104
  • [27] Refinements of some Turán-type inequalities for meromorphic functions
    M. Y. Mir
    S. L. Wali
    W. M. Shah
    Analysis and Mathematical Physics, 2023, 13
  • [28] Higher order Laguerre inequalities for the partition function
    Dou, Li-Mei
    Wang, Larry X. W.
    DISCRETE MATHEMATICS, 2023, 346 (06)
  • [29] HIGHER ORDER TURAN INEQUALITIES FOR THE PARTITION FUNCTION
    Chen, William Y. C.
    Jia, Dennis X. Q.
    Wang, Larry X. W.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (03) : 2143 - 2165
  • [30] On the inequalities of Turán, Bernstein and Erdős–Lax in quaternionic setting
    Lucian Coroianu
    Sorin G. Gal
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115