An orientation-sensitive Vassiliev invariant for virtual knots

被引:16
|
作者
Sawollek, J [1 ]
机构
[1] Univ Dortmund, Fachbereich Math, D-44221 Dortmund, Germany
关键词
virtual knots; Vassiliev invariants; Conway polynomial;
D O I
10.1142/S0218216503002743
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is an open question whether there are Vassiliev invariants that can distinguish an oriented knot from its inverse, i.e., the knot with the opposite orientation. In this article, an example is given for a first order Vassiliev invariant that takes different values on a virtual knot and its inverse. The Vassiliev invariant is derived from the Conway polynomial for virtual knots. Furthermore, it is shown that the zeroth order Vassiliev invariant coming from the Conway polynomial cannot distinguish a virtual link from its inverse and that it vanishes for virtual knots.
引用
收藏
页码:767 / 779
页数:13
相关论文
共 50 条
  • [41] Robust Orientation-Sensitive Trajectory Tracking of Underactuated Autonomous Underwater Vehicles
    He, Shiming
    Kou, Liwei
    Li, Yanjun
    Xiang, Ji
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (09) : 8464 - 8473
  • [42] A graphical construction of the sl(3) invariant for virtual knots
    Kauffman, Louis H.
    Manturov, Vassily O.
    QUANTUM TOPOLOGY, 2014, 5 (04) : 523 - 539
  • [43] Lens knots, periodic links and Vassiliev invariants
    Jeong, MJ
    Park, CY
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2004, 13 (08) : 1041 - 1056
  • [44] Brunnian local moves of knots and Vassiliev invariants
    Yasuhara, Akira
    FUNDAMENTA MATHEMATICAE, 2006, 190 : 289 - 297
  • [45] Orientation-Sensitive Peptide-Induced Plasmonic Circular Dichroism in Silver Nanocubes
    Levi-Belenkova, Tatyana
    Govorov, Alexander O.
    Markovich, Gil
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (23): : 12751 - 12756
  • [46] Genera, band sum of knots and Vassiliev invariants
    Plachta, Leonid
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (15) : 2880 - 2887
  • [47] Orientation-sensitive nonlinear growth of graphene: An epitaxial growth mechanism determined by geometry
    Jiang, Huijun
    Wu, Ping
    Hou, Zhonghuai
    Li, Zhenyu
    Yang, Jinlong
    PHYSICAL REVIEW B, 2013, 88 (05)
  • [48] Vassiliev invariants on fibered and mutually obverse knots
    Stoimenow, A
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1999, 8 (04) : 511 - 519
  • [49] Revisiting the second Vassiliev (In)variant for polymer knots
    Klotz, Alexander R.
    Estabrooks, Benjamin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (24)
  • [50] Web diagrams and realization of Vassiliev invariants by knots
    Ohyama, Y
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2000, 9 (05) : 693 - 701