An orientation-sensitive Vassiliev invariant for virtual knots

被引:16
|
作者
Sawollek, J [1 ]
机构
[1] Univ Dortmund, Fachbereich Math, D-44221 Dortmund, Germany
关键词
virtual knots; Vassiliev invariants; Conway polynomial;
D O I
10.1142/S0218216503002743
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is an open question whether there are Vassiliev invariants that can distinguish an oriented knot from its inverse, i.e., the knot with the opposite orientation. In this article, an example is given for a first order Vassiliev invariant that takes different values on a virtual knot and its inverse. The Vassiliev invariant is derived from the Conway polynomial for virtual knots. Furthermore, it is shown that the zeroth order Vassiliev invariant coming from the Conway polynomial cannot distinguish a virtual link from its inverse and that it vanishes for virtual knots.
引用
收藏
页码:767 / 779
页数:13
相关论文
共 50 条
  • [31] MORPHOLOGY EFFECT ON THE ORIENTATION-SENSITIVE PHOTOVOLTAIC SIGNAL IN NANOGRAPHITE FILMS
    Styapshin, V. M.
    Mikheev, G. M.
    Zonov, R. G.
    Obraztsov, A. N.
    PHYSICS, CHEMISTRY AND APPLICATIONS OF NANOSTRUCTURES: REVIEWS AND SHORT NOTES, 2013, : 509 - 512
  • [32] 2 TYPES OF ORIENTATION-SENSITIVE RESPONSES OF AMACRINE CELLS IN THE MAMMALIAN RETINA
    BLOOMFIELD, SA
    NATURE, 1991, 350 (6316) : 347 - 350
  • [33] Band description of knots and Vassiliev invariants
    Taniyama, K
    Yasuhara, A
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2002, 133 : 325 - 343
  • [34] Novel Orientation-Sensitive Spin Probes for Graphene Oxide Membranes Study
    Chumakova, Natalia A.
    Kalai, Tamas
    Rebrikova, Anastasiya T.
    Sar, Cecilia
    Kokorin, Alexander, I
    MEMBRANES, 2022, 12 (12)
  • [35] KONTSEVICH INTEGRAL FOR KNOTS AND VASSILIEV INVARIANTS
    Dunin-Barkowski, P.
    Sleptsov, A.
    Smirnov, A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2013, 28 (17):
  • [36] Vassiliev invariants of knots in a spatial graph
    Ohyama, Y
    Taniyama, K
    PACIFIC JOURNAL OF MATHEMATICS, 2001, 200 (01) : 191 - 205
  • [37] HORIZONTAL ORGANIZATION OF ORIENTATION-SENSITIVE CELLS IN PRIMATE VISUAL-CORTEX
    BAXTER, WT
    DOW, BM
    BIOLOGICAL CYBERNETICS, 1989, 61 (03) : 171 - 182
  • [38] A two-variable polynomial invariant of virtual knots
    Jeong, Myeong-Ju
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2023, 32 (13)
  • [39] The affine index polynomial invariant of flat virtual knots
    Kim, Joonoh
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2014, 23 (14)
  • [40] Orientation-sensitive magnetic force microscopy for future probe storage applications
    Litvinov, D
    Khizroev, S
    APPLIED PHYSICS LETTERS, 2002, 81 (10) : 1878 - 1880