Cryogenic characterisation of 55 nm SONOS charge-trapping memory in AC and DC modes

被引:7
|
作者
Fan, Lin-Jie [1 ,4 ]
Bi, Jin-Shun [1 ,4 ]
Xu, Yan-Nan [1 ,4 ]
Xi, Kai [1 ]
Ma, Yao [2 ]
Liu, Ming [1 ]
Majumdar, Sandip [3 ]
机构
[1] Chinese Acad Sci, Key Lab Microelect Device & Integrated Technol, Inst Microelect, Beijing 100029, Peoples R China
[2] Sichuan Univ, Coll Phys, Chengdu 610065, Sichuan, Peoples R China
[3] ICFAI Univ, Sch Phys, Agartala 799210, India
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
integrated circuit reliability; silicon; Poole-Frenkel effect; silicon compounds; tunnelling; random-access storage; elemental semiconductors; cryogenic electronics; low-temperature techniques; cryogenic characterisation; cryogenic conditions; AC mode; pulse voltage; direct voltage; SONOS; threshold voltage; read curve; memory window; cryogenic temperatures; silicon-oxide-nitride-oxide-silicon memory cells; SONOS charge-trapping memory; DC modes; direct voltage sweeping; subthreshold swing; programming efficiency; pre-tunnelling electron quantity; Poole-Frenkel effect suppression; on-state current; electrical responses; size; 55; 0; nm; SiON-Si; TEMPERATURE; CMOS; PERFORMANCE; MOSFET;
D O I
10.1049/el.2019.3229
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The electrical responses of 55 nm silicon-oxide-nitride-oxide-silicon (SONOS) memory cells have been investigated under cryogenic conditions, and the changes of the read curves of SONOS in AC mode (programmed/erased with pulse voltage) and DC mode (programmed/erased with direct voltage sweeping) at low temperatures are compared. The experimental results show that with the decrease of temperature, the subthreshold swing of SONOS decreases, whereas the on-state current of SONOS increases. The difference in AC and DC operations causes the threshold voltage of the read curve to drift accordingly, leading to the different change in the memory window. However, in both modes of operations, the efficiencies of programming and erasing decrease at cryogenic temperatures. It is analysed that the reduction of programming efficiency at cryogenic temperatures is caused by the decrease in the quantity of pre-tunnelling electrons. The reduction in erasing efficiency is attributable to the suppression of the Poole-Frenkel effect at low temperatures, which makes it more difficult for electrons to be de-trapped.
引用
收藏
页码:199 / +
页数:3
相关论文
共 50 条
  • [21] Modeling TANOS Memory Program Transients to Investigate Charge-Trapping Dynamics
    Padovani, Andrea
    Larcher, Luca
    Heh, Dawei
    Bersuker, Gennadi
    IEEE ELECTRON DEVICE LETTERS, 2009, 30 (08) : 882 - 884
  • [22] Performance improvement of flash memory using AlN as charge-trapping Layer
    Chakraborty, P.
    Mahato, S. S.
    Maiti, T. K.
    Bera, M. K.
    Mahata, C.
    Samanta, S. K.
    Biswas, A.
    Maiti, C. K.
    MICROELECTRONIC ENGINEERING, 2009, 86 (03) : 299 - 302
  • [23] In situ electron holography study of charge distribution in high-κ charge-trapping memory
    Y. Yao
    C. Li
    Z. L. Huo
    M. Liu
    C. X. Zhu
    C. Z. Gu
    X. F. Duan
    Y. G. Wang
    L. Gu
    R. C. Yu
    Nature Communications, 4
  • [24] Threshold Voltage Fluctuations in Localized Charge-Trapping Nonvolatile Memory Devices
    Janai, Meir
    Lee, Meng Chuan
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (03) : 596 - 601
  • [25] Electrostatic Energy Harvester Based on Charge-Trapping Nonvolatile Memory Structure
    Shi, J. J.
    Huang, X. D.
    2016 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC), 2016, : 153 - 156
  • [26] Electrical Characteristics for Flash Memory With Germanium Nitride as the Charge-Trapping Layer
    Lin, Chia-Chun
    Wu, Yung-Hsien
    Lin, Yuan-Sheng
    Wu, Min-Lin
    Chen, Lun-Lun
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2013, 12 (03) : 436 - 441
  • [27] In situ electron holography study of charge distribution in high-κ charge-trapping memory
    Yao, Y.
    Li, C.
    Huo, Z. L.
    Liu, M.
    Zhu, C. X.
    Gu, C. Z.
    Duan, X. F.
    Wang, Y. G.
    Gu, L.
    Yu, R. C.
    NATURE COMMUNICATIONS, 2013, 4
  • [28] Impact of Vpass Interference on Charge-Trapping NAND Flash Memory Devices
    Hsiao, Yi-Hsuan
    Lue, Hang-Ting
    Chen, Wei-Chen
    Chang, Kuo-Pin
    Tsui, Bing-Yue
    Hsieh, Kuang-Yeu
    Lu, Chih-Yuan
    IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2015, 15 (02) : 136 - 141
  • [29] Charge-Trapping Devices Using Multilayered Dielectrics for Nonvolatile Memory Applications
    Shih, Wen-Chieh
    Cheng, Chih-Hao
    Lee, Joseph Ya-min
    Chiu, Fu-Chien
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2013, 2013
  • [30] Charge-Trapping-Type Flash Memory Device With Stacked High-k Charge-Trapping Layer
    Tsai, Ping-Hung
    Chang-Liao, Kuei-Shu
    Liu, Te-Chiang
    Wang, Tien-Ko
    Tzeng, Pei-Jer
    Lin, Cha-Hsin
    Lee, L. S.
    Tsai, Ming-Jinn
    IEEE ELECTRON DEVICE LETTERS, 2009, 30 (07) : 775 - 777