Deep Reinforcement Learning-Based Resource Allocation for mm-Wave Dense 5G Networks

被引:0
|
作者
Martyna, Jerzy [1 ]
机构
[1] Jagiellonian Univ, Inst Comp Sci, Fac Math & Comp Sci, ul Prof S Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
D O I
10.1007/978-3-031-15471-3_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In microwave technology, directional beams are used for the propagation of radio waves. Nevertheless, significant errors occur in localizing the receiver. The paper presents the method for radio resource allocation and beam management based on the double deep Q-learning algorithm. Simulation studies confirm that the proposed method significantly improves the efficiency of the millimeter 5G network.
引用
收藏
页码:298 / 307
页数:10
相关论文
共 50 条
  • [41] Joint resource allocation for emotional 5G IoT systems using deep reinforcement learning
    Ziyan Yang
    Haibo Mei
    Wenyong Wang
    Dongdai Zhou
    Kun Yang
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 3517 - 3528
  • [42] A Survey on Applications of Deep Reinforcement Learning in Resource Management for 5G Heterogeneous Networks
    Lee, Ying Loong
    Qin, Donghong
    2019 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2019, : 1856 - 1862
  • [43] Dynamic Resource Aware VNF Placement with Deep Reinforcement Learning for 5G Networks
    Dalgkitsis, Anestis
    Mekikis, Prodromos-Vasileios
    Antonopoulos, Angelos
    Kormentzas, Georgios
    Verikoukis, Christos
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [44] Deep Learning-Based Throughput Prediction in 5G Cellular Networks
    Batool, Iqra
    Fouda, Mostafa M.
    Fadlullah, Zubair Md
    2024 INTERNATIONAL CONFERENCE ON SMART APPLICATIONS, COMMUNICATIONS AND NETWORKING, SMARTNETS-2024, 2024,
  • [45] Deep Learning-Based Handover Prediction for 5G and Beyond Networks
    Lima, Joao P. S. H.
    de Medeiros, Alvaro A. M.
    de Aguiar, Eduardo P.
    Silva, Edelberto F.
    de Sousa, Vicente A.
    Nunes, Marcelo L.
    Reis, Alysson L.
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 3468 - 3473
  • [46] Blockchain-Enabled Resource Trading and Deep Reinforcement Learning-Based Autonomous RAN Slicing in 5G
    Boateng, Gordon Owusu
    Ayepah-Mensah, Daniel
    Doe, Daniel Mawunyo
    Mohammed, Abegaz
    Sun, Guolin
    Liu, Guisong
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (01): : 216 - 227
  • [47] Deep Reinforcement Learning Based Resource Allocation for Heterogeneous Networks
    Yang, Helin
    Zhao, Jun
    Lam, Kwok-Yan
    Garg, Sahil
    Wu, Qingqing
    Xiong, Zehui
    2021 17TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS (WIMOB 2021), 2021, : 253 - 258
  • [48] Joint Path Selection and Rate Allocation Framework for 5G Self-Backhauled mm-wave Networks
    Trung Kien Vu
    Bennis, Mehdi
    Debbah, Merouane
    Latva-aho, Matti
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (04) : 2431 - 2445
  • [49] Deep Reinforcement Learning-Based Video Offloading and Resource Allocation in NOMA-Enabled Networks
    Gao, Siyu
    Wang, Yuchen
    Feng, Nan
    Wei, Zhongcheng
    Zhao, Jijun
    FUTURE INTERNET, 2023, 15 (05):
  • [50] Deep Reinforcement Learning-Based Resource Allocation in Cooperative UAV-Assisted Wireless Networks
    Luong, Phuong
    Gagnon, Francois
    Tran, Le-Nam
    Labeau, Fabrice
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (11) : 7610 - 7625