Deep Reinforcement Learning-Based Resource Allocation for mm-Wave Dense 5G Networks

被引:0
|
作者
Martyna, Jerzy [1 ]
机构
[1] Jagiellonian Univ, Inst Comp Sci, Fac Math & Comp Sci, ul Prof S Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
D O I
10.1007/978-3-031-15471-3_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In microwave technology, directional beams are used for the propagation of radio waves. Nevertheless, significant errors occur in localizing the receiver. The paper presents the method for radio resource allocation and beam management based on the double deep Q-learning algorithm. Simulation studies confirm that the proposed method significantly improves the efficiency of the millimeter 5G network.
引用
收藏
页码:298 / 307
页数:10
相关论文
共 50 条
  • [31] Reinforcement Learning Approach for Resource Allocation in 5G HetNets
    Allagiotis, Fivos
    Bouras, Christos
    Kokkinos, Vasileios
    Gkamas, Apostolos
    Pouyioutas, Philippos
    2023 INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN, 2023, : 387 - 392
  • [32] Reinforcement Learning-based Computation Resource Allocation Scheme for 5G Fog-Radio Access Network
    Khumalo, Nosipho
    Oyerinde, Olutayo
    Mfupe, Luzango
    2020 FIFTH INTERNATIONAL CONFERENCE ON FOG AND MOBILE EDGE COMPUTING (FMEC), 2020, : 353 - 355
  • [33] Reinforcement Learning-Based Radio Resource Control in 5G Vehicular Network
    Zhou, Yibo
    Tang, Fengxiao
    Kawamoto, Yuichi
    Kato, Nei
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (05) : 611 - 614
  • [34] Analysis of TCP Performance in 5G mm-wave Mobile Networks
    Jimenez Mateo, Pablo
    Fiandrino, Claudio
    Widmer, Joerg
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [35] Towards Trustworthy Reinforcement Learning-based Resource Management in Beyond 5G
    Perez-Romero, Jordi
    Salient, Oriol
    Vila, Irene
    Kartsakli, Elli
    Tuna, Omer Faruk
    Mohalik, Swamp Kumar
    Tao, Xin
    2024 JOINT EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS & 6G SUMMIT, EUCNC/6G SUMMIT 2024, 2024, : 806 - 811
  • [36] Resource allocation strategy based on deep reinforcement learning in 6G dense network
    Yang F.
    Yang C.
    Huang J.
    Zhang S.
    Yu T.
    Zuo X.
    Yang C.
    Tongxin Xuebao/Journal on Communications, 2023, 44 (08): : 215 - 227
  • [37] A Deep-Learning-Based Radio Resource Assignment Technique for 5G Ultra Dense Networks
    Zhou, Yibo
    Fadlullah, Zubair Md.
    Mao, Bomin
    Kato, Nei
    IEEE NETWORK, 2018, 32 (06): : 28 - 34
  • [38] Deep Reinforcement Learning Based Resource Allocation for 5G V2V Groupcast Communications
    Wu, Shang-Huan
    Hwang, Ren-Hung
    Wang, Chih-Yu
    Chou, Ching-Hsuan
    2023 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC, 2023, : 1 - 6
  • [39] Transfer Learning-Based Accelerated Deep Reinforcement Learning for 5G RAN Slicing
    Nagib, Ahmad M.
    Abou-Zeid, Hatem
    Hassanein, Hossam S.
    PROCEEDINGS OF THE IEEE 46TH CONFERENCE ON LOCAL COMPUTER NETWORKS (LCN 2021), 2021, : 249 - 256
  • [40] Joint resource allocation for emotional 5G IoT systems using deep reinforcement learning
    Yang, Ziyan
    Mei, Haibo
    Wang, Wenyong
    Zhou, Dongdai
    Yang, Kun
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (12) : 3517 - 3528