Effect of Y doping on microstructure and thermophysical properties of yttria stabilized hafnia ceramics

被引:34
|
作者
Li, Chun [1 ]
Ma, Yue [1 ]
Xue, Zhaolu [1 ]
Yang, Yonghong [2 ]
Chen, Jianhua [2 ]
Guo, Hongbo [1 ]
机构
[1] Beihang Univ BUAA, Sch Mat Sci & Engn, Beijing Key Lab Adv Funct Mat & Thin Film Technol, 37 Xueyuan Rd, Beijing 100191, Peoples R China
[2] Xian Aerosp Prop Inst, Xian Natl Civil Aerosp Ind Base, 289 Fei Tian Rd, Xian 71000, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Yttria stabilized hafnia (YSH); Phase stability; Microstructure; Thermophysical properties; THERMAL BARRIER COATINGS; EB-PVD; SOLID-SOLUTIONS; CONDUCTIVITY; ZIRCONIA; EXPANSION; BEHAVIOR;
D O I
10.1016/j.ceramint.2018.07.030
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A series of Y2O3-doped HfO2 ceramics (Hf1-xYxO2-0.5x, x = 0, 0.04, 0.08, 0.12, 0.16 and 0.2) were synthesized by solid-state reaction at 1600 degrees C. The microstructure, thermophysical properties and phase stability were investigated. Hf1-xYxO2-0.5x ceramics were comprised of monoclinic (M) phase and cubic (C) phase when Y3+ ion concentration ranged from 0.04 to 0.16. The thermal conductivity of Hf1-xYxO2-0.5x ceramic decreased as Y3+ ion concentration increased and Hf0.8Y0.2O1.9 ceramic revealed the lowest thermal conductivity of similar to 1.8 W/m*K at 1200 degrees C. The average thermal expansion coefficient (TEC) of Hf1-xYxO2-0.5x between 200 degrees C and 1300 degrees C increased with the Y3+ ion concentration. Hf0.8Y0.2O1.9 yielded the highest TEC of similar to 10.4 x 10(-6) K-1 while keeping good phase stability between room temperature and 1600 degrees C.
引用
收藏
页码:18213 / 18221
页数:9
相关论文
共 50 条
  • [31] Effect of graphite on microstructure and friction-wear properties of yttria-stabilized zirconia coatings
    Li, Qijiang
    Shi, Lingbing
    Cai, Youxiao
    Wang, Xiao
    Li, Lu
    Yuan, Zhentao
    Tang, Wenshen
    Zhan, Zhaolin
    Ceramics International, 2024, 50 (24) : 54116 - 54124
  • [32] Effect of Y3+ ion doping on the microstructure, transmittance and thermal properties of CaF2 transparent ceramics
    Li, Weiwei
    Huang, Haijun
    Mei, Bingchu
    Song, Jinghong
    Xu, Xiaodong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 747 : 359 - 365
  • [33] Effect of sintering time on microstructure and optical properties of yttria-partially stabilized monolithic zirconia
    Yousry, Mahinour A.
    Hammad, Ihab A.
    El Halawani, Mohamed T.
    Aboushelib, Moustafa N.
    DENTAL MATERIALS, 2023, 39 (12) : 1169 - 1179
  • [34] The Effect of Sintering Temperature on the Phase Composition, Microstructure, and Mechanical Properties of Yttria-Stabilized Zirconia
    Kulyk, Volodymyr
    Duriagina, Zoia
    Vasyliv, Bogdan
    Vavrukh, Valentyna
    Kovbasiuk, Taras
    Lyutyy, Pavlo
    Vira, Volodymyr
    MATERIALS, 2022, 15 (08)
  • [36] Microstructure and mechanical properties of yttria stabilized zirconia/silicon carbide nanocomposites
    Inst. of Sci. and Indust. Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567, Japan
    J. Eur. Ceram. Soc., 6 (693-699):
  • [37] Effect of Cerium Doping on Microstructure and Dielectric Properties of BaTiO3 Ceramics
    Yasmin, Sabina
    Choudhury, Shamima
    Hakim, M. A.
    Bhuiyan, A. H.
    Rahman, M. J.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2011, 27 (08) : 759 - 763
  • [38] Effect of calcium oxide doping on the microstructure and optical properties of YAG transparent ceramics
    Hua, Tengfei
    Zeng, Qiang
    Qi, Jianqi
    Cheng, Gang
    Chen, Xingtao
    Huang, Zhangyi
    Zhang, Qinghua
    Huang, Xu
    Guo, Xiaofeng
    Wei, Nian
    Lu, Tiecheng
    MATERIALS RESEARCH EXPRESS, 2019, 6 (03)
  • [39] Effect of Mn doping on the microstructure and magnetic properties of CuFeO2ceramics
    Ye, Fengjiao
    Dai, Haiyang
    Peng, Ke
    Li, Tao
    Chen, Jing
    Chen, Zhenping
    Li, Nannan
    JOURNAL OF ADVANCED CERAMICS, 2020, 9 (04) : 444 - 453
  • [40] Effect of Co doping on microstructure, dielectric, and energy storage properties of BCZT ceramics
    X. W. Wang
    X. N. Shi
    R. Y. Zhang
    Y. C. Shi
    Y. F. Liang
    B. H. Zhang
    H. N. Li
    S. Y. Hu
    K. X. Yu
    Y. C. Hu
    J. Shang
    S. Q. Yin
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 20399 - 20412