Support Vector Machines for Survival Analysis with R

被引:0
|
作者
Fouodo, Cesaire J. K. [1 ]
Koenig, Inke R. [1 ]
Weihs, Claus [2 ]
Ziegler, Andreas [3 ]
Wright, Marvin N. [1 ,4 ]
机构
[1] Univ Lubeck, Inst Med Biometrie & Stat, Univ Klinikum Schleswig Holstein, Campus Lubeck, Lubeck, Germany
[2] Tech Univ Dortmund, Fak Stat, Dortmund, Germany
[3] StatSol, Lubeck, Germany
[4] Leibniz Inst Prevent Res & Epidemiol BIPS, Bremen, Germany
来源
R JOURNAL | 2018年 / 10卷 / 01期
关键词
REGRESSION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article introduces the R package survivalsvm, implementing support vector machines for survival analysis. Three approaches are available in the package: The regression approach takes censoring into account when formulating the inequality constraints of the support vector problem. In the ranking approach, the inequality constraints set the objective to maximize the concordance index for comparable pairs of observations. The hybrid approach combines the regression and ranking constraints in a single model. We describe survival support vector machines and their implementation, provide examples and compare the prediction performance with the Cox proportional hazards model, random survival forests and gradient boosting using several real datasets. On these datasets, survival support vector machines perform on par with the reference methods.
引用
收藏
页码:412 / 423
页数:12
相关论文
共 50 条
  • [41] Support vector machines and regularization
    Cherkassky, V
    Ma, YQ
    Seventh IASTED International Conference on Signal and Image Processing, 2005, : 166 - 171
  • [42] Nested support vector machines
    Lee, Gyemin
    Scott, Clayton
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 1985 - 1988
  • [43] Selective support vector machines
    Onur Seref
    O. Erhun Kundakcioglu
    Oleg A. Prokopyev
    Panos M. Pardalos
    Journal of Combinatorial Optimization, 2009, 17 : 3 - 20
  • [44] Oblique support vector machines
    Yao, CC
    Yu, PT
    PROCEEDINGS OF THE 2004 INTERNATIONAL SYMPOSIUM ON INTELLIGENT MULTIMEDIA, VIDEO AND SPEECH PROCESSING, 2004, : 699 - 702
  • [45] Hierarchical support vector machines
    Liu, ZG
    Shi, WZ
    Qin, QQ
    Li, XW
    Xie, DH
    IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 186 - 189
  • [46] Nested Support Vector Machines
    Lee, Gyemin
    Scott, Clayton
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1648 - 1660
  • [47] Minimax support vector machines
    Davenport, Mark A.
    Baraniuk, Richard G.
    Scott, Clayton D.
    2007 IEEE/SP 14TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 630 - +
  • [48] Sex with Support Vector Machines
    Moghaddam, B
    Yang, MH
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 960 - 966
  • [49] Fβ support vector machines
    Callut, K
    Dupont, P
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 1443 - 1448
  • [50] Semismooth support vector machines
    Michael C. Ferris
    Todd S. Munson
    Mathematical Programming, 2004, 101 : 185 - 204