Support Vector Machines for Survival Analysis with R

被引:0
|
作者
Fouodo, Cesaire J. K. [1 ]
Koenig, Inke R. [1 ]
Weihs, Claus [2 ]
Ziegler, Andreas [3 ]
Wright, Marvin N. [1 ,4 ]
机构
[1] Univ Lubeck, Inst Med Biometrie & Stat, Univ Klinikum Schleswig Holstein, Campus Lubeck, Lubeck, Germany
[2] Tech Univ Dortmund, Fak Stat, Dortmund, Germany
[3] StatSol, Lubeck, Germany
[4] Leibniz Inst Prevent Res & Epidemiol BIPS, Bremen, Germany
来源
R JOURNAL | 2018年 / 10卷 / 01期
关键词
REGRESSION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article introduces the R package survivalsvm, implementing support vector machines for survival analysis. Three approaches are available in the package: The regression approach takes censoring into account when formulating the inequality constraints of the support vector problem. In the ranking approach, the inequality constraints set the objective to maximize the concordance index for comparable pairs of observations. The hybrid approach combines the regression and ranking constraints in a single model. We describe survival support vector machines and their implementation, provide examples and compare the prediction performance with the Cox proportional hazards model, random survival forests and gradient boosting using several real datasets. On these datasets, survival support vector machines perform on par with the reference methods.
引用
收藏
页码:412 / 423
页数:12
相关论文
共 50 条
  • [21] ECG analysis based on PCA and support vector machines
    Zhang, H
    Zhang, LQ
    PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND BRAIN, VOLS 1-3, 2005, : 743 - 747
  • [22] Analysis of metabolomic data using support vector machines
    Mahadevan, Sankar
    Shah, Sirish L.
    Marrie, Thomas J.
    Slupsky, Carolyn M.
    ANALYTICAL CHEMISTRY, 2008, 80 (19) : 7562 - 7570
  • [23] Analysis of switching dynamics with competing support vector machines
    Chang, MW
    Lin, CJ
    Weng, RCH
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (03): : 720 - 727
  • [24] Fuzzy support vector machines for biomedical data analysis
    Chen, XJ
    Harrison, R
    Zhang, YQ
    2005 IEEE International Conference on Granular Computing, Vols 1 and 2, 2005, : 131 - 134
  • [25] Effect analysis of dimension reduction on support vector machines
    Zhu, MH
    Zhu, JB
    Chen, WL
    PROCEEDINGS OF THE 2005 IEEE INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING AND KNOWLEDGE ENGINEERING (IEEE NLP-KE'05), 2005, : 592 - 596
  • [26] Comparing Linear Discriminant Analysis and Support Vector Machines
    Gokcen, I
    Peng, J
    ADVANCES IN INFORMATION SYSTEMS, 2002, 2457 : 104 - 113
  • [27] Analysis of alcoholism data using support vector machines
    Robert Yu
    Sanjay Shete
    BMC Genetics, 6
  • [28] Patent value analysis using support vector machines
    Secil Ercan
    Gulgun Kayakutlu
    Soft Computing, 2014, 18 : 313 - 328
  • [29] Analysis of alcoholism data using support vector machines
    Yu, R
    Shete, S
    BMC GENETICS, 2005, 6 (Suppl 1)
  • [30] Patent value analysis using support vector machines
    Ercan, Secil
    Kayakutlu, Gulgun
    SOFT COMPUTING, 2014, 18 (02) : 313 - 328