Support Vector Machines for Survival Analysis with R

被引:0
|
作者
Fouodo, Cesaire J. K. [1 ]
Koenig, Inke R. [1 ]
Weihs, Claus [2 ]
Ziegler, Andreas [3 ]
Wright, Marvin N. [1 ,4 ]
机构
[1] Univ Lubeck, Inst Med Biometrie & Stat, Univ Klinikum Schleswig Holstein, Campus Lubeck, Lubeck, Germany
[2] Tech Univ Dortmund, Fak Stat, Dortmund, Germany
[3] StatSol, Lubeck, Germany
[4] Leibniz Inst Prevent Res & Epidemiol BIPS, Bremen, Germany
来源
R JOURNAL | 2018年 / 10卷 / 01期
关键词
REGRESSION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article introduces the R package survivalsvm, implementing support vector machines for survival analysis. Three approaches are available in the package: The regression approach takes censoring into account when formulating the inequality constraints of the support vector problem. In the ranking approach, the inequality constraints set the objective to maximize the concordance index for comparable pairs of observations. The hybrid approach combines the regression and ranking constraints in a single model. We describe survival support vector machines and their implementation, provide examples and compare the prediction performance with the Cox proportional hazards model, random survival forests and gradient boosting using several real datasets. On these datasets, survival support vector machines perform on par with the reference methods.
引用
收藏
页码:412 / 423
页数:12
相关论文
共 50 条
  • [1] Fast Training of Support Vector Machines for Survival Analysis
    Poelsterl, Sebastian
    Navab, Nassir
    Katouzian, Amin
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2015, PT II, 2015, 9285 : 243 - 259
  • [2] Support Vector Machines in R
    Karatzoglou, A
    Meyer, D
    Hornik, K
    JOURNAL OF STATISTICAL SOFTWARE, 2006, 15 (09):
  • [3] Analysis of detectors for support vector machines and least square support vector machines
    Kuh, A
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 1075 - 1079
  • [4] Analysis of support vector machines
    Abe, S
    NEURAL NETWORKS FOR SIGNAL PROCESSING XII, PROCEEDINGS, 2002, : 89 - 98
  • [5] Support Vector Machines for Program Analysis
    Flexeder, Andrea
    Putz, Matthias
    Runkler, Thomas
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [6] Analysis of Support Vector Machines Regression
    Tong, Hongzhi
    Chen, Di-Rong
    Peng, Lizhong
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (02) : 243 - 257
  • [7] ANALYSIS OF LAPLACIAN SUPPORT VECTOR MACHINES
    Huang, Juan
    Chen, Hong
    Tao, Yan-Fang
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, 2009, : 128 - +
  • [8] Analysis of Support Vector Machines Regression
    Hongzhi Tong
    Di-Rong Chen
    Lizhong Peng
    Foundations of Computational Mathematics, 2009, 9 : 243 - 257
  • [9] A comparative analysis of support vector machines and extreme learning machines
    Liu, Xueyi
    Gao, Chuanhou
    Li, Ping
    NEURAL NETWORKS, 2012, 33 : 58 - 66
  • [10] Additive survival least-squares support vector machines
    Van Belle, V.
    Pelckmans, K.
    Suykens, J. A. K.
    Van Huffel, S.
    STATISTICS IN MEDICINE, 2010, 29 (02) : 296 - 308